Описание технологического процесса производства в машиностроении. Технологический процесс

Общие сведения о технологии

Технология – научное описание методов и средств произв-ва в какой-либо отрасли пром-ти (технология машиностроения, земледелия, металлургии, транспорта). Главными видами технологий являются: механ. и хим. В результате механической технологии, основанной преимущественно на механическом воздействии на обрабатываемый материал в определённой последовательности, происходит изменение его формы, размеров или физико-механических свойств. Процессы химической технологии включают химическую переработку сырья, вследствие чего сырьё полностью или частично изменяет свой химический состав или агрегатное состояние, т.е. приобретает новое качество. Понятие технология применимо к отраслям хозяйства, в которых можно выделить не только способы, методы и приемы труда, но и изучить предметы и средства труда, а также их использование при создании продукции. Быстрое развитие технологии является одним из главных условий научно-технич. прогресса, расширения пром-го производства, обеспечения выпуска конкурентоспособной продукции. Рыночная экономика предполагает развитие и разработку новых технологий. Особенно там, где совершенствование старых методов не может способствовать улучшению экономических показателей (машино- и приборостроение). Прогресс в технологии науки и техники связан с достижениями в области химич. технологии, технологии пластических масс и материаловеденья. Создание новых материалов дает возможность создавать новые машины с более высокой работоспособностью и с более интенсивной эксплуатацией. Актуальной является проблема антикоррозионной защиты материалов. Прогрессивность технологии оценивают уровнем технологий, под которым понимают показатель, характеризующий прогрессивность применяемых в производстве технологических процессов, оборудования.

Производственный и технологический процесс в машиностроении; основные этапы производства машин

Производственный процесс-совокупность всех действий людей и орудий производства, необходимых для изготовления или ремонта изделий на данном предприятии. Он охватывает подготовку средств производства и организацию обслуживания рабочих мест, процессы изготовления, хранения и транспортировки заготовок деталей машин и материалов, сборку, контроль, упаковку и сбыт готовой продукции, а также другие виды работ, связанные с изготовлением выпускаемых изделий. Производственный процесс делится на основной, вспомогательный, обслуживающий. Основной связан с изготовлением деталей и сборки из них машин и механизмов. К вспомогательному относится изготовление и заточка инструмента, обслуживание и ремонт оборудования, установка нового оборудования. К обслуживающему производству относятся склады, транспорт, уборка цехов предприятия, блок питания. В зависимости от стадии изготовления различают заготовительную, обрабатывающую и сборочную фазы. К заготовительной относятся литейное производство, обработка давлением. Технологический процесс – часть производственного процесса, содержащая действия по изменению и последующему определению состояния предмета труда. В результате технологического процесса обработки происходит изменение размеров, формы или физико-механических свойств обрабатываемого материала. Технологический процесс делится на отдельные операции, которые характеризуются наличием рабочего места, технологич.оборудования, технологич.оснастки, т.е. того, чем рабочий воздействует на предмет труда (заготовку). Перечень наименований изделий, которые нужно выпустить в интервале времени с указанием количества изделий, их наименований, типов и размеров, сроком выполнения каждого наименования наз. Производственной программой. В зависимости от производственной программы, характера осуществления производственного процесса различают: единичное, серийное и массовое производство.

Введение

Совокупность методов и приемов изготовления машин, выработанных в течение длительного времени и используемых в определенной области производства, составляет технологию этой области. В связи с этим возникли понятия: технология литья, технология сварки, технология механической обработки и т.д. Все эти области производства относятся к технологии машиностроения, охватывающей все этапы процесса изготовления машиностроительной продукции.

В дисциплине «Технология машиностроения» комплексно изучаются вопросы взаимодействия станка, приспособления, режущего инструмента и обрабатываемой детали, пути построения наиболее рациональных технологических процессов обработки деталей машин, включая выбор оборудования и технологической оснастки, методы рационального построения технологических процессов сборки машин.

Учение о технологии машиностроения в своем развитии прошло в течение немногих лет путь от простой систематизации производственного опыта механической обработки деталей и сборки машин до создания научно обоснованных положений, разработанных на базе теоретических исследований, научно проведенных экспериментов и обобщения передового опыта машиностроительных заводов. Развитие технологии механической обработки и сборки и ее направленность определяются стоящими перед машиностроительной промышленностью задачами совершенствования технологических процессов, изыскания и изучения новых методов производства, дальнейшего развития и внедрения комплексной механизации и автоматизации производственных процессов на базе достижений науки и техники, обеспечивающих наиболее высокую производительность труда при надлежащем качестве и наименьшей себестоимости выпускаемой продукции.


1. Производственный и технологический процессы

Под производственным процессом понимают совокупность всех действий людей и орудий труда, осуществляемых на предприятии для получения из материалов и полуфабрикатов готовых изделий.

В производственный процесс входят не только основные, непосредственно связанные с изготовлением деталей и сборкой из них машины, процессы, но и все вспомогательные процессы, обеспечивающие возможность изготовления продукции (например, транспортирование материалов и деталей, контроль деталей, изготовление приспособлений и инструмента и т.д.).

Технологическим процессом называют последовательное изменение формы, размеров, свойств материала или полуфабриката в целях получения детали или изделия в соответствии с заданными техническими требованиями.

Технологический процесс механической обработки деталей должен проектироваться и выполняться таким образом, чтобы посредством наиболее рациональных и экономичных способов обработки удовлетворялись требования к деталям (точность обработки, шероховатость поверхности, взаимное расположение осей и поверхностей, правильность контуров и т.д.), обеспечивающие правильную работу собранной машины.

2. Структура технологического процесса

В целях обеспечения наиболее рационального процесса механической обработки заготовки составляется план обработки с указанием, какие поверхности надо обработать, в каком порядке и какими способами.

В связи с этим весь процесс механической обработки расчленяется на отдельные составные части: технологические операции, позиции, переходы, ходы, приемы.

Технологической операцией называется часть технологического процесса, выполняемая на одном рабочем месте и охватывающая все последовательные действия рабочего (или группы рабочих) и станка по обработке заготовки (одной или нескольких одновременно).

Например, обтачивание вала, выполняемое последовательно сначала на одном конце, а потом после поворота, т.е. перестановки вала в центрах, без снятия его со станка, – на другом конце, является одной операцией.

Если же все заготовки данной партии обтачиваются сначала на одном конце, а потом на другом, то это составит две операции.

Установом называют часть операции, выполняемую при одном закреплении заготовки (или нескольких одновременно обрабатываемых) на станке или в приспособлении, или собираемой сборочной единицы.

Например, обтачивание вала при закреплении в центрах – первый установ; обтачивание вала после его поворота и закрепления в центрах для обработки другого конца – второй установ. При каждом повороте детали на какой-либо угол создается новый установ.

Установленная и закрепленная заготовка может изменять свое положение на станке относительно его рабочих органов под воздействием перемещающих или поворотных устройств, занимая новую позицию.

Позицией называется каждое отдельное положение заготовки, занимаемое ею относительно станка при неизменном ее закреплении.

Например, при обработке на многошпиндельных полуавтоматах и автоматах деталь при одном ее закреплении занимает различные положения относительно станка путем вращения стола (или барабана), последовательно подводящего деталь к разным инструментам.

Операция разделяется на переходы – технологические и вспомогательные.

Технологический переход – законченная часть технологической операции, характеризуемая постоянством применяемого инструмента, поверхностей, образуемых обработкой, или режима работы станка.

Вспомогательный переход – законченная часть технологической операции, состоящая из действия человека и или оборудования, которые не сопровождаются изменением формы, размеров и шероховатости поверхности, но необходимы для выполнения технологического перехода. Примерами вспомогательных переходов являются установка заготовки, смена инструмента и т.д.

Изменение только одного из перечисленных элементов (обрабатываемой поверхности, инструмента или режима резания) определяет новый переход.

Переход состоит из рабочих и вспомогательных ходов.

Под рабочим ходом понимают часть технологического перехода, охватывающую все действия, связанные со снятием одного слоя материала при неизменности инструмента, поверхности обработки и режима работы станка.

На станках, обрабатывающих тела вращения, под рабочим ходом понимают непрерывную работу инструмента, например на токарном станке снятие резцом одного слоя стружки непрерывно, на строгальном станке – снятие одного слоя металла по всей поверхности. Если слой материала не снимается, а подвергается пластической деформации (например, при образовании рифлений или при обкатывании поверхности гладким роликом с целью ее уплотнения), также применяют понятие рабочего хода, как и при снятии стружки.

Вспомогательный ход – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемого изменением формы, размеров, шероховатости поверхности или свойств заготовки, но необходимого для выполнения рабочего хода.

Все действия рабочего, совершаемые им при выполнении технологической операции, расчленяются на отдельные приемы.

Под приемом понимают законченное действие рабочего, обычно приемами являются вспомогательные действия, например постановка или снятие детали, пуск станка, переключение скорости или подачи и т.п. Понятие прием используется при техническом нормировании операции.

В план механической обработки включают также промежуточные работы – контрольные, слесарные и др., необходимые для дальнейшей обработки, например спайка, сборка двух деталей, запрессовка сопрягаемых деталей, термическая обработка и т.д. Окончательные операции для других видов работ, выполняемых после механической обработки, вносятся в план соответствующих видов обработки.

Производственная структура предприятия с технологической специализацией



3. Трудоемкость технологической операции

Время и затраты на выполнение операций являются важнейшими критериями характеризующими ее эффективность в условиях заданной программы выпуска изделий. Программа выпуска изделий – это установленный для данного предприятия перечень изготовляемых изделий с указанием объема выпуска по каждому наименованию за планируемый период времени.

Объем выпуска это количество изделий, определенных наименований, типа размеров и исполнений, изготавливаемых в течение планируемого периода времени. Объем выпуска в значительной степени определяют принципы построения технологического процесса. Расчетный, максимально возможный в определенных условиях объем выпуска изделий за единицу времени называют производственной мощностью.

При заданном объеме выпуска, изделия изготавливают партиями. Это количество штук деталей или комплекта изделий одновременно запущенных в производство. Производственную партию или ее часть, поступившую на рабочее место для выполнения технологической операции, называют операционной партией.

Серия – это общее количество изделий, подлежащее изготовлению по неизменным чертежам.

Для выполнения каждой операции рабочий затрачивает определенное количество труда. Трудоемкость операции – это количество времени затраченное рабочим требуемой квалификации при нормальной интенсивности труда и условиях на выполнение данной работы. Единицы измерения – человеко/час.

4. Норма времени

Правильное нормирование затраты рабочего времени на обработку деталей, сборку и изготовление всей машины имеет большое значение для производства.

Норма времени – время, отведенное на производство единицы продукции или выполнение определенной работы (в часах, минутах, секундах).

Норму времени определяют на основе технического расчета и анализа, исходя из условий возможно более полного использования технических возможностей оборудования и инструмента в соответствии с требованиями к обработке данной детали или сборке изделия.

Технологические процессы в машиностроении Лекция 1 ВВЕДЕНИЕ Н. А. Денисова, доцент кафедры машиностроения, канд. пед. наук

План лекции 1 Краткая характеристика изучаемой дисциплины 2 Классификация технологических процессов 3 Основные понятия и определения

Краткая характеристика изучаемой дисциплины Технология – это наука о методах, с помощью которых можно реализовать производственный процесс с целью получения готового изделия с параметрами качества, обеспечивающими требуемые его эксплуатационные свойства. Частью производственного процесса применительно к машиностроению является технологический процесс, или определенная последовательность действий, необходимая для получения конструкционных материалов, заготовок, деталей, комплектов, агрегатов и машин в целом с заданными параметрами качества l

Краткая характеристика изучаемой дисциплины l Цель изучения дисциплины – освоить терминологию и методологию, используемые при проектировании технологических и производственных процессов в машиностроении, а также при их реализации на производственных предприятиях.

Классификация технологических процессов Технологические процессы классифицируют по четырем признакам: l Формообразование l Параметры качества l Производительность изготовления изделий или партии изделий l Себестоимость изготовления изделий.

Классификация технологических процессов По признаку «Формообразование» вся технология конструкционных материалов делится на этапы – переделы: l l Металлургия (производство металлов и сплавов) Производство заготовок (литье, обработка давлением, сварка, методы порошковой металлургии) Механическая обработка (методы резания, поверхностное пластическое деформирование) Сборочное производство (создание подвижных и неподвижных соединений деталей механическими, электрическими способами, сваркой…)

Классификация технологических процессов Признак «Параметры качества» характеризуется группами качества, в числе которых: химический состав l структура и физико-механические свойства основного объема заготовки или детали и их поверхностных слоев l геометрическая форма l точность размеров, формы и взаимного расположения поверхностей l микрогеометрия поверхности l

Классификация технологических процессов l Признак «Производительность изготовления изделий или партии изделий» характеризуется временем, необходимым для изготовления изделия или партии изделий l Характеристикой признака «Себестоимость изготовления изделия» являются суммарные затраты на изготовление одного изделия.

Технологический процесс l Технологический процесс – часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда l Технологический процесс – это совокупность методов обработки: изготовления, изменения состояния, свойств, формы, сырья, материалов, – осуществляемых в процессе производства продукции

Основные понятия и определения Термин Определение ОБЩИЕ ПОНЯТИЯ 1. Технологический процесс Процесс D. Technologischer Prozeß Fertigungsablauf Е. Manufacturing process F. Precédé de fabrication 2. Технологическая операция Операция D. Operation; Arbeitsgang Е. Operation F. Opération Часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда. Примечания: 1. Технологический процесс может быть отнесен к изделию, его составной части или к методам обработки, формообразования и сборки. 2. К предметам труда относятся заготовки и изделия. Законченная часть технологического выполняемая на одном рабочем месте процесса,

Основные понятия и определения 3. Технологический метод Метод 4. Технологическая база D. Technologische Basis 5. Обрабатываемая поверхность D. Zu bearbeitende Fläche Совокупность правил, определяющих последовательность и содержание действий при выполнении формообразования, обработки или сборки, перемещения, включая технический контроль, испытания в технологическом процессе изготовления или ремонта, установленных безотносительно к наименованию, типоразмеру или исполнению изделия Поверхность, сочетание поверхностей, ось или точка, используемые для определения положения предмета труда в процессе изготовления. Примечание. Поверхность, сочетание поверхностей, ось или точка принадлежат предмету труда. Поверхность, подлежащая обработки. воздействию в процессе

Основные понятия и определения 6. Технологический документ Документ D. Technologisches Dokument 7. Оформление технологического документа Оформление документа Графический или текстовый документ, который отдельно или в совокупности с другими документами определяет технологический процесс или операцию изготовления изделия Комплекс процедур, необходимых для подготовки и утверждения технологического документа в соответствии с порядком, установленным на предприятии. Примечание. К подготовке документа относится его подписание, согласование и т. д.

Основные понятия и определения 97. Материал Исходный предмет труда, изготовления изделия потребляемый для 98. Основной материал D. Grundmaterial E. Basic material F. Matière première Материал исходной заготовки. Примечание. К основному материалу относится материал, масса которого входит в массу изделия при выполнении технологического процесса, например материал сварочного электрода, припоя и т. д. 99. Вспомогательный материал D. Hilfsmaterial E. Auxiliary material F. Matière auxiliaire Материал, расходуемый при выполнении технологического процесса дополнительно к основному материалу. Примечание. Вспомогательными могут быть материалы, расходуемые при нанесении покрытия, пропитке, сварке (например, аргон), пайке (например, канифоль), закалке и т. д.

Основные понятия и определения 100. Полуфабрикат D. Halbzeug E. Semi-finished product F. Demi-produit Предмет труда, подлежащий дальнейшей обработке на предприятии-потребителе 101. Заготовка D. Rohteil E. Blank F. Ebauche Предмет труда, из которого изменением формы, размеров, свойств поверхности и (или) материала изготавливают деталь 102. Исходная заготовка D. Anfangs-Rohteil E. Primary blank F. Ebauche première Заготовка перед первой технологической операцией 103. Листоштампованное изделие Деталь или заготовка, изготовленная методом листовой штамповки

Основные понятия и определения (Измененная редакция, Поправка, ИУС 6 -91) 104. Отливка D. Gußstück E. Casting 105. Поковка D. Schmiedestück E. Forging Изделие или заготовка, полученные технологическим методом литья Изделие или заготовка, полученные технологическими методами ковки, объемной штамповки или вальцовки. Примечания: 1. Кованая поковка - поковка, полученная технологическим методом ковки. 2. Штампованная поковка - поковка, полученная технологическим методом объемной штамповки. 3. Вальцованная поковка - поковка, полученная технологическим методом вальцовки из сортового проката. (Измененная редакция, Поправка, ИУС 6 -91) 106. Изделие По ГОСТ 15895 -77

Основные понятия и определения 107. Комплектующее изделие Изделие предприятия-поставщика, применяемое как составная часть изделия, выпускаемого предприятиемизготовителем. Примечание. Составными частями изделия могут быть детали и сборочные единицы 108. Типовое изделие D. Typenwerkstück Е. Typified workpiece F. Pièce type Изделие, принадлежащее к группе изделий близкой конструкции, обладающее наибольшим количеством конструктивных и технологических признаков этой группы 109. Сборочный комплект D. Montagesatz E. Assembly set F. Jeu de montage Группа составных частей изделия, которые необходимо подать на рабочее место для сборки изделия или его составной части

ИСПОЛЬЗУЕМЫЕ ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ ГОСТ 3. 1109 -82 Термины и определения основных понятий Гоцеридзе, Р. М. Процессы формообразования и инструменты: учебник для студ. учреждений сред. проф. образования / Р. М. Гоцеридзе. – М. : Издательский центр «Академия» , 2007. – 384 с. 3. Материаловедение и технология конструкционных материалов: учебник для студ. в. учеб. заведений / В. Б. Арзамасов, А. Н. Волчков, В. А. Головин и др. ; под ред. В. Б. Арзамасова, А. А. Черепахина. – М. : Издательский центр «Академия» , 2007. – 448 с. 4. Основы механосборочного производства: Учебное пособие для машиностр. спец. вузов А. Г. Схиртладзе, В. Г. Осетров, Т. Н. Иванова, Г. Н. Главатских. – М: ИЦ МГТУ «Станкин» , 2004. – 239 с. 5. Схиртладзе, А. Г. Проектирование нестандартного оборудования: учебник / А. Г. Схиртладзе, С. Г. Ярушин. – М. : Новое знание, 2006. – 424 с. 1. 2.

Производственным процессом в машиностроении называют совокупность всех этапов, которые проходят полуфабрикаты на пути их превращения в готовую продукцию: металлообрабатывающие станки, литейные машины, кузнечно-прессовое оборудование, приборы и другие.

На машиностроительном заводе производственный процесс включает:

Подготовку материалов и заготовок для последующей обработки, хранение;

Различные виды обработки (механическую, термическую и т.д.);

Сборку изделий и их транспортирование, контроль качества обработки или сборки на всех этапах производства

Транспортирование заготовок и изделий по цехам и участкам или всему заводу;

Отделку, окраску и упаковку,

Хранение готовой продукции.

Наилучший результат дает всегда тот производственный процесс, в котором все этапы строго организационно согласованы и экономически обоснованы.

Технологическим процессом называют часть производственного процесса, содержащую действия по изменению и последующему определению состояния предмета производства. В результате выполнения технологических процессов изменяются физико-химические свойства материалов, геометрическая форма, размеры и относительное положение элементов деталей, качество поверхности, внешний вид объекта производства и т.д. Технологический процесс выполняют на рабочих местах. Рабочее место представляет собой часть цеха, в котором размещено соответствующее оборудование. Технологический процесс состоит из технологических и вспомогательных операций (например, технологический процесс обработки валика состоит из токарных, фрезерных, шлифовальных и других операций).

Производственная программа машиностроительного завода содержит номенклатуру изделий, изготавливаемых с указанием их типов и размеров, количество изделий каждого наименования, подлежащих изготовлению в течение года, перечень и количество запасных частей к выпускаемых изделий. На основе общей производственной программы завода собираются детальные производственные программы по цехам, в которых определены наименование, количество, черная и чистый вес деталей, которые должны быть изготовлены в данном цехе либо изготавливаются в нескольких цехах. Составляется производственная программа для каждого цеха и одна сводная, указывающая какие детали и в каком количестве проходят через каждый цех. При составлении подетальных программ по цехам к общему количеству деталей прилагаются запасные детали к выпускаемых машин, выпускаемых, а также для обеспечения бесперебойной эксплуатации в течение заданного периода. Количество запасных деталей принимают в процентном отношении к количеству основных деталей.
К производственной программе прилагаются чертежи общих видов, чертежи сборочных узлов и отдельных деталей, спецификация деталей и ТУ на их изготовление и сдачу.
3. Механические и физические свойства материалов. Технологические и эксплуатационные свойства материалов.


Основные свойства металлов и сплавов.

Свойства металлов подразделяют на механические, физико-химические, технологические и эксплуатационные.

К основным механическим свойствам относят прочность, твердость, пластичность, ударную вязкость, усталостную прочность. Внешняя нагрузка вызывает в твердом теле напряжение и деформацию. Напряжение – это сила, отнесенная к площади поперечного сечения, МПа.

Деформация – это изменение формы и размеров тела под влиянием воздействия внешних сил или в результате процессов, возникающих в самом теле (например, фазовых превращений, усадки и т. п.). Деформация может быть упругая (исчезающая после снятия нагрузки) и пластическая (остающаяся после снятия нагрузки). При увеличении нагрузки упругая деформация переходит в пластическую; при дальнейшем повышении нагрузки происходит разрушение тела.

Прочность - это способность твердого тела сопротивляться деформации

или разрушению под действием статических или динамических нагрузок. Прочность определяют с помощью специальных механических испытаний образцов, изготовленных из исследуемого материала.

Для определения прочности при статических нагрузках образцы испытывают на растяжение, сжатие, изгиб, и кручение. Испытание на растяжение обязательны. Прочность при статических нагрузках оценивается временным сопротивлением и пределом текучести; временное сопротивление - это условное напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца;

предел текучести- это напряжение, при котором начинается пластическое течение металла.

Прочность при динамических нагрузках определяют по данным испытаний:

На ударную вязкость (разрушению ударом стандартного образца на копре),

На усталостную прочность (определению способности материала выдерживать, не разрушаясь, большое число повторно-переменных нагрузок),

На ползучесть (определение способности нагретого материала медленно и непрерывно деформироваться при постоянных нагрузках).

Наиболее часто применяют испытания на ударную вязкость.

Пластичность - это способность материала получать остаточное изменение формы и размера без разрушения. Пластичность характеризуется относительным удлинением при разрыве, %.

Твердость – это способность материала сопротивляться внедрению в него

другого, не получающего остаточных деформаций тела. Значение твердости и ее размерность для одного и того же материала зависят от применяемого метода измерения. Значения твердости, определенные различными методами, пересчитывают по таблицам и эмпирическим формулам. Например, твердость по Бринеллю (НВ, МПа) определяют из отношения нагрузки Р, приложенной к шарику, к площади поверхности полученного отпечатка шарика F отп: HB=P/Fотп.

Ударная вязкость – способность металлов и сплавов оказывать сопротивление действию ударных нагрузок.

К физическим свойствам металлов и сплавов относятся температура плавления, плотность, температурные коэффициенты линейного и объемного расширения, электросопротивление и электропроводимость.

Физические свойства сплавов обусловленны их составом и структурой.

К химическим свойствам относят способность к химическому взаимодействию с агрессивными средами, а также антикоррозионные свойства.

Способность материала подвергаться различным методам горячей и холодной обработки определяют по его технологическим свойствам.

К технологическим свойствам металлов и сплавов относятся литейные свойства, деформируемость, свариваемость и обрабатываемость режущим инструментом. Эти свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.

Литейные свойства определяются способностью расплавленного металла

или сплава к заполнению литейной формы, степенью химической неоднородности по сечению полученной отливки, а также величиной усадки– сокращением размеров при кристаллизации и дальнейшем охлаждении.

Деформируемость – это способность принимать необходимую форму под

влиянием внешней нагрузки без разрушения и при наименьшем сопротивлении нагрузке.

Свариваемость – это способность металлов и сплавов образовывать неразъемные соединения требуемого качества.

Обрабатываемостью называют свойства металлов поддаваться обработке резанием. Критериями обрабатываемости являются режимы резания и качество поверхностного слоя.

Технологические свойства часто определяют выбор материала для конструкции. Разрабатываемые материалы могут быть внедрены в производство только в том случае, если их технологические свойства удовлетворяют необходимым требованиям.

Современное автоматизированное производство, оснащенное гибкими системами управления, нередко предъявляет к технологическим свойствам материала особые требования, которые должны позволять осуществлять комплексный технологический процесс на всех стадиях получения изделия с заданным ритмом: например, проведение сварки на больших скоростях, ускоренный темп охлаждения отливок, обработка резанием на повышенных режимах и т. п. при обеспечении необходимого условия - высокого качества получаемой продукции.

К эксплуатационным свойствам в зависимости от условия работы машины или конструкции относят износостойкость, коррозионную стойкость, хладостойкость, жаропрочность, жаростойкость, антифрикционность материала и др.

Износостойкость – это способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

Коррозионная стойкость – сопротивление сплава действию агрессивных кислотных и щелочных сред.

Хладостойкость – способность сплава сохранять пластические свойства при температурах ниже 0 градусов по Цельсию.

Жаропрочность – способность сплава сохранять механические свойства при высоких температурах.

Антифрикционность – способность сплава прирабатываться к другому сплаву.

Эти свойства определяются в зависимости от условия работы машин или конструкций специальными испытаниями

Транскрипт

1 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет В. М. Никитенко, Ю. А. Курганова Технологические процессы в машиностроении Текст лекций для студентов машиностроительных специальностей Ульяновск 2008

2 УДК (075.8) ББК г я 7 Н 93 Рецензенты: генеральный директор, канд.техн.наук, ОАО «Ульяновский НИАТ» В. А. Марковцев, главный специалист прессовых работ ОАО «УАЗ» А. Г. Шанов Утверждено редакционно-издательским советом Ульяновского государственного технического университета в качестве текста лекций Никитенко, В. М. Н 93 Технологические процессы в машиностроении: текст лекций / В.М. Никитенко, Ю. А. Курганова. Ульяновск: УлГТУ, с. ISBN Пособие содержит ряд разделов, необходимых для ознакомления студентов с конструкционными материалами, которые служат для изготовления машин и других технических изделий. В пособии рассмотрены технологические способы производства черных и цветных металлов, изготовление заготовок и деталей машин из металлов и неметаллических материалов литьем, обработкой давлением, сваркой, резанием и другими способами. Для студентов вузов машиностроительных специальностей. Работа подготовлена на кафедре «Материаловедение и обработка металлов давлением» УДК (075.8) ББК 34.4 г я7 ISBN В. М. Никитенко, Ю. А. Курганова, Оформление. УлГТУ, 2008

3 ОГЛАВЛЕНИЕ Введение 5 Раздел 1. Производственный процесс изготовления машины. Конструкционные материалы Глава 1. Теоретические основы технологии машиностроения Лекция 1. Понятие о производственном и технологическом процессах 7 Лекция 2. Служебное назначение машины. Качество машины. 11 Точность деталей. Точность обработки Лекция 3. Рабочая документация технологического процесса 22 Глава 2. Конструкционные материалы, применяемые в машиностроении и приборостроении Лекция 4. Понятие о внутреннем строении металлов и сплавов 25 Лекция 5. Основные свойства металлов и сплавов 34 Лекция 6. Стали. Чугуны. Цветные металлы и сплавы 36 Лекция 7. Неметаллические материалы. Композиционные материалы. 50 Полимеры. Области применения различных материалов Лекция 8. Основы термической обработки 53 Раздел 2. Структура и продукция металлургического и литейного производства Глава 3. Металлургия металлов Лекция 9. Производство чугуна. Производство стали 62 Лекция 10. Особенности производства цветных металлов 68 Глава 4. Технологические процессы литья Лекция 11. Основы литейного производства. Классификация литых заготовок. Способы литья 74 Раздел 3.Технологические процессы обработки пластическим деформированием Глава 5.Основы теории обработки металлов давлением (ОМД) Лекция 12. Сущность и основные способы обработки металлов 88 давлением Лекция 13. Нагрев металла и нагревательные устройства 91 Лекция 14. Технологические операции ОМД 93 Лекция 15. Технико-экономические показатели и критерии выбора рациональных способов ОМД 108 Раздел 4. Сварка, пайка, склеивание материалов Глава 6. Сварочное производство Лекция 16. Сварка давлением 110 3

4 Лекция17. Сварка плавлением 115 Лекция 18. Сварные соединения и швы, сварочные материалы 122 Глава 7. Пайка материалов Лекция19. Сущность процесса и материалы для пайки 129 Лекция 20. Восстановление и упрочнение деталей наплавкой 132 Глава 8. Клеевые соединения Лекция 21. Получение неразъемных соединений склеиванием 135 Раздел 5. Технологические процессы обработки резанием Глава 9. Основы технологии формообразования поверхностей деталей машин и режущие инструменты Лекция 22. Режим резания, геометрия срезаемого слоя, шероховатость 137 поверхности. Лекция 23. Классификация металлорежущих станков 142 Лекция 24. Обработка на металлорежущих станках 144 Лекция 25. Особенности обработки заготовок электрофизическими и электрохимическими методами 160 Глава 10. Отделочная обработка поверхностей Лекция 26. Методы отделочной обработки поверхностей 172 Раздел 6. Производство деталей из неметаллических материалов и металлических порошков Глава 11. Способы изготовления композиционных материалов Лекция 27 Общие сведения о пластмассах. Переработка пластмасс в изделия 181 Лекция 28. Производство деталей из жидких полимеров. Сварка и склеивание 183 пластмасс Лекция 29. Производство изделий из резины 189 Лекция 30. Производство деталей из металлических порошков 191 Лекция 31. Получение материалов на основе полимерных веществ 195 Раздел 7. Технологические процессы сборки Глава 12. Особенности технологического процесса сборки Лекция 32. Содержание процесса сборки и структуры сборочных 200 единиц. Контроль в машиностроении 211 Заключение Библиографический список 212 4

5 Введение Разработка нового изделия в машиностроении сложная комплексная задача, связанная не только с достижением требуемого технического уровня этого изделия, но и с приданием его конструкций таких свойств, которые обеспечивают максимально возможное снижение затрат труда, материалов и энергии на его разработку, изготовление, эксплуатацию и ремонт. Решение этой задачи определяется творческим содружеством создателей новой техники конструкторов и технологов и их взаимодействием на этапах разработки конструкции с его изготовителями и потребителями. В реализации требуемых свойств изделий машиностроения определяющая роль принадлежит методам и средствам производства этих изделий. Детали, узлы и другие компоненты машин чрезвычайно разнообразны, и для их изготовления необходимы материалы с самыми различными свойствами, а также технологические процессы, основанные на разных принципах действия. Многолетняя практика показывает, что в современном машиностроительном производстве не существует универсальных методов обработки, в равной мере эффективных для изготовления различных деталей из разных материалов. Каждый метод обработки имеет свою конкретную область применения, причем эти области нередко пересекаются так, что одна и та же деталь может быть изготовлена различными методами. Поэтому выбор способа изготовления деталей с учетом конкретных производственных условий связан с необходимостью выбора оптимального метода из большого числа возможных, исходя из заданных технико-экономических ограничений как по параметрам изготавливаемой детали, так и по условиям эксплуатации оборудования и инструмента. Целью изучения дисциплины является ознакомление студентов с основами знаний о современном машиностроительном производстве: с видами материалов и способов их производства, с технологическими процессами изготовления деталей машин и сборочными работами. Текст лекций содержит 7 разделов. В первом разделе излагаются основы производственного процесса и его составляющие. Рассматриваются кристаллизация и строение металлов и сплавов, способы их термической обработки, описаны превращения, протекающие в сплавах при их нагреве и охлаждении. Уделено внимание сплавам на основе цветных металлов, свойствам сталей, методам их улучшения, а также неметаллическим, порошковым и композиционным материалам, которые являются перспективными. Во втором разделе рассмотрены основы металлургического и литейного процесса. Внимание сконцентрировано на методах получения и физикохимической переработке конструкционных материалов. Рассмотрены основы современной технологии литейного производства, специальные способы литья и применяемое оборудование для их выплавки. Третий раздел посвящен обработке металлов давлением. Даны представления о влиянии процессов пластического деформирования на структуру металла, на его механические свойства. 5

6 В четвертом разделе рассмотрены вопросы сварочного производства, процессы пайки и получение неразъемных клеевых соединений. Физические основы сварки, ее способы, различные виды оборудования. В пятом разделе описаны основные процессы, протекающие при обработке металлов резанием. Приведены краткие сведения о металлорежущих станках, инструментах, работах, выполняемых на этом оборудовании. Здесь же рассмотрены вопросы электрофизической и электрохимической обработки. В шестом разделе рассматривают получение материалов на основе полимеров. В седьмом разделе рассмотрены технологические процессы сборки, вопросы контроля в машиностроении. Развитие и совершенствование любого производства в настоящее время зависит от знаний инженера и от того, насколько он владеет методами изготовления деталей машин и их сварки. Важным направлением научно - технического процесса является создание и широкое применение новых конструкционных материалов для того, чтобы повысить технический уровень и надежность оборудования с учетом экономических показателей, для этого инженер должен обладать глубокими технологическими знаниями. 6

7 Раздел 1. Производственный процесс изготовления машины. Конструкционные материалы Глава 1. Теоретические основы технологии машиностроения Лекция 1. Понятие о производственном и технологическом процессах Все то, что имеет общество для удовлетворения своих потребностей, связано с использованием или переработкой продуктов природы. Последнее неразрывно связано с необходимостью реализации тех или иных производственных процессов, т. е. в конечном итоге с затратами человеческого труда. В производственный процесс входят все этапы переработки продуктов природы в предметы (машины, строения, материалы и т. п.), необходимые человеку. Так, например, для создания станка необходимо добыть и переработать руду, затем из металла создать заготовки будущих деталей станка, осуществлять этап их переработки, а затем сборки. При создании машины обычно ограничиваются рассмотрением производственных процессов, реализуемых на машиностроительном предприятии. Изделием в машиностроении называют любой предмет или набор предметов, подлежащих изготовлению. Изделием может быть любая машина или ее элементы в сборе, остальные детали в зависимости от того, что является продуктом конечной стадии данного производства. Например, для станкостроительного завода изделием являются станок или автоматическая линия, для завода изготовления крепежных деталей болт, гайка и т. п. Производственным процессом в машиностроении называют совокупность всех этапов, которые проходят полуфабрикаты на пути их превращения в готовую продукцию: металлообрабатывающие станки, литейные машины, кузнечно-прессовое оборудование, приборы и другие. На машиностроительном заводе производственный процесс включает: подготовку и обслуживание средств заготовок, их хранение; различные виды обработки (механическую, термическую и т.д.); сборку изделий и их транспортирование, отделку, окраску и упаковку, хранение готовой продукции. Наилучший результат дает всегда тот производственный процесс, в котором все этапы строго организационно согласованы и экономически обоснованы. Технологическим процессом называют часть производственного процесса, содержащую действия по изменению и последующему определению состояния предмета производства. В результате выполнения технологических процессов изменяются физико-химические свойства материалов, геометрическая форма, размеры и относительное положение элементов деталей, качество поверхности, внешний вид объекта производства и т.д. Технологический процесс выполняют на рабочих местах. Рабочее место представляет собой часть 7

8 цеха, в котором размещено соответствующее оборудование. Технологический процесс состоит из технологических и вспомогательных операций (например, технологический процесс обработки валика состоит из токарных, фрезерных, шлифовальных и других операций). Производственный состав машиностроительного завода. Машиностроительные заводы состоят из отдельных производственных единиц, называемых цехами, и различных устройств. Состав цехов, устройств и сооружений завода определяется объектом выпуска продукции, характером технологических процессов, требованиями к качеству изделий и другими производственными факторами, а также в значительной мере степенью специализации производства и кооперирования завода с другими предприятиями и смежными производствами. Специализация предполагает сосредоточение большого объема выпуска строго определенных видов продукции на каждом предприятии. Кооперирование предусматривает обеспечение заготовками (отливками, поковками, штамповками), комплектующими агрегатами, различными приборами и устройствами, изготовляемыми на других специализированных предприятиях. Если проектируемый завод будет получать отливки в порядке кооперирования, то в его составе не будет литейных цехов. Например, некоторые станкостроительные заводы получают отливки со специализированного литейного завода, снабжающего потребителей литьем в централизованном порядке. Состав энергетических и санитарно-технических устройств завода также может быть различными в зависимости от возможности кооперирования с другими промышленными и коммунальными предприятиями по снабжению электроэнергией, газом, паром, сжатым воздухом, в части устройства транспорта, водопровода, канализации и т. д. Дальнейшее развитие специализации и в связи с этим широкое кооперирование предприятий значительно отразятся на производственной структуре заводов. Во многих случаях в составе машиностроительных заводов не предусматриваются литейные и кузнечно-штамповочные цехи, цехи по изготовлению крепежных деталей и т. д., так как заготовки, метизы и другие детали поставляются специализированными заводами. Многие заводы массового производства в порядке кооперирования со специализированными заводами также могут снабжаться готовыми узлами и агрегатами (механизмами) для выпускаемых машин; например, автомобильные и тракторные заводы готовыми двигателями и др. Состав машиностроительного завода можно разделить на следующие группы: 1) заготовительные цехи (чугунолитейные, сталелитейные, литейные цветных металлов, кузнечные, кузнечно-прессовые, прессовые, кузнечноштамповые и др.); 8

9 2) обрабатывающие цехи (механические, термические, холодной штамповки, деревообрабатывающие, металлопокрытий, сборочные, окрасочные и др.); 3) вспомогательные цехи (инструментальные, ремонтно-механические, электроремонтные, модельные, экспериментальные, испытательные и др.); 4) складские устройства (для металла, инструмента, формовочных и шихтовых материалов, принадлежностей и разных материалов для готовых изделий, топлива, моделей и др.); 5) энергетические устройства (электростанция, теплоэлектроцентраль, компрессорные и газогенераторные установки); 6) транспортные устройства; 7) санитарно-технические устройства (отопление, вентиляция, водоснабжение, канализация); 8) общезаводские учреждения и устройства (центральная лаборатория, технологическая лаборатория, центральная измерительная лаборатория, главная контора, проходная контора, медицинский пункт, амбулатория, устройства связи, столовая и др.). Технологической операцией называют законченную часть технологического процесса, выполняемую на одном рабочем месте одним или несколькими рабочими, или одной или несколькими единицами автоматического оборудования. Операция охватывает все действия оборудования и рабочих над одним или несколькими совместно обрабатываемыми (собираемыми) объектами производства. Операция является основным элементом производственного планирования и учета. Трудоемкость производственного планирования и учета. Трудоемкость технологического процесса, число рабочих, обеспечение оборудованием и инструментом определяют по числу операций. К вспомогательным операциям относят контроль деталей, их транспортирование, складирование и другие работы. Технологические операции делят на технологические и вспомогательные переходы, а также на рабочие и вспомогательные ходы. Основным элементом операции является переход. Технологический переход законченная часть технологической операции, характеризуемая постоянством применяемого инструмента и поверхностей, образуемых обработкой или соединяемых при сборке. При обработке резанием технологический переход представляет собой процесс получения каждой новой поверхности или сочетания поверхностей режущим инструментом. Обработку осуществляют в один или несколько переходов (сверление отверстия обработка в один переход, а получение отверстия тремя последовательно работающими инструментами: сверлом, зенкером, разверткой - обработка в три перехода). Переходы могут совмещаться во времени, например, обработка сразу трех отверстий тремя расточными оправками, или фрезерование трех сторон корпусной детали тремя торцевыми фрезами. 9

10 Вспомогательный переход законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением формы, размеров и качества поверхностей, но необходимы для выполнения технологического перехода (например, установка заготовки, ее закрепление, смена режущего инструмента). Переходы могут быть совмещены во времени за счет одновременной обработки нескольких поверхностей детали несколькими режущими инструментами. Их можно выполнять последовательно, параллельно (например, одновременная обработка нескольких поверхностей не агрегатных или многорезцовых станках) и параллельно-последовательно. Рабочим ходом называют законченную часть технологического перехода, состоящую из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, качества поверхности или свойств заготовки. При обработке резанием в результате каждого рабочего хода с поверхности или сочетания поверхностей заготовки снимается один слой материала. Для осуществления обработки заготовку устанавливают и закрепляют с требуемой точностью в приспособлении или на станке, при обработке - на сборочном стенде или другом оборудовании. На станках, обрабатывающих тела вращения, под рабочим ходом понимают непрерывную работу инструмента, например на токарном станке снятие резцом одного слоя стружки непрерывно, на строгальном станке снятие одного слоя металла по всей поверхности. Если слой материала не снимается, а подвергается пластической деформации (например, при образовании рифлений), также применяют понятие рабочего хода, как и при снятии стружки. Вспомогательный ход законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемого изменением формы, размеров, шероховатости поверхности или свойств заготовки, но необходимого для выполнения рабочего хода. Все действия рабочего, совершаемые им при выполнении технологической операции, расчленяются на отдельные приемы. Под приемом понимают законченное действие рабочего. Установом называют часть операции, выполняемую при одном закреплении заготовки (или нескольких одновременно обрабатываемых) на станке или в приспособлении, или собираемой сборочной единицы, так, например, обтачивание вала при закреплении в центрах - первый установ; обтачивание вала после его поворота и закрепления в центрах для обработки другого конца второй установ. При каждом повороте детали на какой-либо угол создается новый установ (при повороте детали необходимо указывать угол поворота: 45, 90, и т. д.) Установленная и закрепленная заготовка может изменять свое положение на станке относительно его рабочих органов под воздействием перемещающих или поворотных устройств, занимая новую позицию. Позицией называется каждое отдельное положение заготовки, занимаемое ею относительно станка при неизменном ее закреплении. 10

11 Производственная программа машиностроительного завода содержит номенклатуру изготавливаемых изделий (с указанием типов и размеров), количество изделий каждого наименования, подлежащих выпуску в течение года, перечень и количество запасных деталей к выпускаемым изделиям. Единичное производство характеризуется выпуском изделий широкой номенклатуры в малом количестве и единичных экземплярах. Изготовление изделий либо совсем не повторяется, либо повторяется через неопределенное время, например: выпуск экспериментальных образцов машин, крупных металлорежущих станков, прессов и т. д. В серийном производстве изделия изготовляют по неизменным чертежам партиями и сериями, которые повторяются через определенные промежутки времени. В зависимости от числа изделий в серии серийное производство разделяют на мелко-, средне- и крупносерийное. Продукцией серийного производства являются машины, выпускаемые в значительном количестве: металлорежущие станки, насосы, компрессоры и т. д. В этом производстве используют высокопроизводительное, универсальное, специализированное и специальное оборудование, универсальные, переналаживаемые быстродействующие приспособления, универсальный и специальный инструмент. Широко применяют станки с ЧПУ, многоцелевые станки. Оборудование располагают по ходу технологического процесса, а часть его по типам станков. На большинстве рабочих мест выполняют периодически повторяющиеся операции, В серийном производстве цикл изготовления продукции короче, чем в единичном производстве. Массовым называется производство большого числа изделий одного и того же типа по неизменным чертежам в течение длительного времени. Продукцией массового производства являются изделия узкой номенклатуры и стандартного типа. В этом производстве на большинстве рабочих мест выполняют только одну закрепленную за ними постоянно повторяющуюся операцию. Оборудования в поточных линиях располагают по ходу технологического процесса. В массовом производстве широко используют специальные станки, станкиавтоматы, автоматические линии и заводы, специальные режущие измерительные инструменты и различные средства автоматизации. Лекция 2. Служебное назначение машины. Качество машины. Точность деталей. Точность обработки Служебное назначение машины. Любая машина создается для удовлетворения определенной потребности человека, которая находит отражение в служебном назначении машины. Создание любой машины является следствием потребности того или иного технологического процесса. Такой подход предопределяет необходимость в четком определении тех функций, которые должна выполнять данная машина, т. е. в определении ее служебного назначения. 11

12 Машина может быть определена как устройство, выполняющее целесообразные механические движения, служащие для преобразования полуфабрикатов в предметы (изделие) или действия необходимые человеку. Технологической машиной называется машина, в которой преобразование материала состоит в изменении его формы, размеров и свойств. К этому классу машин относятся металлорежущие станки, кузнечно-прессовое оборудование и др. Под служебным назначением машины понимается максимально уточненная и четко сформулированная задача, для решения которой предназначается машина. Однако и приведенная формулировка недостаточно развернута, чтобы создать и выпустить станок, отвечающий своему служебному назначению. Ее необходимо дополнить такими данными, как характер и точность заготовок, которые должны поступать на станок, материал режущего инструмента, необходимость или отсутствие необходимости обработки полученных поверхностей на валиках и т. д. В ряде случаев необходимо указать те условия, в которых должны работать машины; например, возможные колебания температуры, влажности и т. д. Опыт машиностроения показывает, что каждая ошибка, допущенная при выявлении и уточнении служебного назначения машины, а также и ее механизмов, не только приводит к созданию недостаточно качественной машины, но и вызывает лишние затраты труда на ее освоение. Нередко недостаточно глубокое изучение и выявление служебного назначения машины порождает излишне жесткие, экономически неоправданные требования к точности и другим показателям качества машины. Каждая машина, как и ее отдельные механизмы, выполняет свое служебное назначение при помощи ряда поверхностей или их сочетаний, принадлежащих деталям машины. Условимся называть такие поверхности или их сочетания исполнительными поверхностями машины или ее механизмов. Действительно, сочетания конических поверхностей переднего конца шпинделя и пиноли задней бабки определяют положение обрабатываемой на станке детали, установленной в центрах, поверхности которых входят в комплекс исполнительных поверхностей. На фланец переднего конца шпинделя монтируется поводковый патрон, через который обрабатываемой детали сообщается вращательное движение. Поверхности резцедержателя определяют положение резцов относительно обрабатываемой детали и непосредственно передают им необходимые для обработки движения. Исполнительными поверхностями зубчатой передачи, рассматриваемой как механизм, являются сочетания боковых рабочих поверхностей зубьев пары зубчатых колес, работающих совместно. Исполнительными поверхностями двигателя внутреннего сгорания, рассматриваемого как механизм, служащего для преобразования тепловой энергии в механическую, являются поверхности поршня и рабочего цилиндра и т. д. 12

13 Основы разработки конструктивных форм машины и ее деталей. После того как выявлено и четко сформулировано служебное назначение машины, выбирают исполнительные поверхности или заменяющие их сочетания поверхностей надлежащей формы. Затем выбирается закон относительного движения исполнительных поверхностей, обеспечивающий выполнение машиной ее служебного назначения, разрабатывается кинематическая схема машины и всех составляющих ее механизмов. На следующем этапе рассчитываются силы, действующие на исполнительных поверхностях машины, и характер их действия. Используя эти данные, рассчитывают величину и характер сил, действующих на каждом из звеньев кинематических цепей машины и её механизмов с учетом действия сил сопротивления (трения, инерции, веса и т. д.). Зная служебное назначение каждого звена кинематических цепей машины или ее механизмов, закон движения, характер, величину действующих на него сил и ряд других факторов (среда, в которой должны работать звенья и т. д.), выбирают материал для каждого звена. Путем расчета определяются конструктивные формы, т. е. превращают их в детали машины. Для того чтобы детали, несущие исполнительные поверхности машины и ее механизмов, а также и все другие, выполняющие функции звеньев ее кинематических цепей, двигались в соответствии с требуемым законом их относительного движения и занимали одни относительно других требуемые положения, их соединяют при помощи различного рода других деталей в виде корпусов, станин, коробок, кронштейнов и т. д., которые называют базирующими деталями. Конструктивные формы каждой детали машины и ее механизмов создаются, исходя из ее служебного назначения в машине, путем ограничения необходимого количества выбранного материала различными поверхностями и их сочетаниями. С точки зрения технологии изготовления будущей детали, например, валика, использование цилиндрических поверхностей более экономично, поэтому для опорных частей валика выбирают две цилиндрические поверхности. С точки технологии механической обработки валика, его целесообразно было бы сделать цилиндрическим одного диаметра на всю длину. Однако с точки зрения монтажа зубчатых колес и их обработки такая конструкция была бы менее экономичной. Исходя из этого, останавливаемся для данных производственных условий на конструкции ступенчатого валика. Выбор поверхностей, которые должны ограничить кусок материала, и придание ему требуемой формы еще не означает, что валик будет правильно выполнять свое служебное назначение в машине. Поверхности, относительно которых определяется положение других поверхностей, принято называть базирующими или, короче, базами. Следовательно, при разработке конструктивных форм детали вначале необходимо создать поверхности, принимаемые за ее базы, тогда все остальные 13

14 поверхности должны занять относительно их положение, требуемое служебным назначением детали в машине. Деталь является пространственным телом, поэтому, у нее должно быть в общем случае, как это следует из теоретической механики, три базирующие поверхности, представляющие собой систему координат. Относительно этих координатных плоскостей определяется положение всех остальных поверхностей, образующих конструктивные формы детали. Таким образом, каждая деталь должна иметь свои системы координат. Как правило, в качестве координатных плоскостей обычно используются поверхности основных баз и их оси. Относительно этих координатных плоскостей определяется положение всех остальных поверхностей детали, при помощи которых создаются ее конструктивные формы (вспомогательные базы, исполнительные и свободные поверхности). Из изложенного следует, что создание конструктивных форм деталей следует разрабатывать, учитывая из их служебное назначение и требования технологии их наиболее экономичного изготовления и монтажа. В соответствии с этим под деталью следует понимать необходимое количество выбранного материала, ограниченного рядом поверхностей или их сочетаний, расположенных одни относительно других (выбранных за базы), исходя из служебного назначения детали в машине и наиболее экономичной технологии изготовления и монтажа. Построение машины осуществляется путем соединения составляющих ее деталей. Базирующая деталь машины должна соединять и обеспечивать требуемые служебным назначением машины относительные положения (расстояния и повороты) всех составляющих машину сборочных единиц и деталей. Соединение деталей и сборочных единиц осуществляется путем приведения в соприкосновение поверхностей основных баз присоединяемой сборочной единицы или детали с вспомогательными базами детали, к которой они присоединяются (базирующей). Следовательно, поверхности основных баз присоединяемой детали и вспомогательных баз присоединяемой детали и вспомогательных баз базирующей детали, к которой они присоединяются, являются негативными. Это очень важное обстоятельство, играющее большую роль при разработке конструктивных форм деталей, разработке технологии их изготовления и конструирования приспособлений. Необходимость в правильных геометрических формах поверхностей деталей появляется тогда, когда детали оставляется хотя бы одна степень свободы для выполнения служебного назначения в машине. В подобных случаях между поверхностями основных баз такой детали и вспомогательных баз детали, к которой они присоединяются, возникает трение, порождающее износ сопряженных поверхностей. Износ вызывает, в свою очередь, изменение размеров и положения поверхностей основных и вспомогательных баз сопрягаемых деталей, а, следовательно, изменение расстояний и поворотов этих поверхностей (положения), а тем самым и относительного по- 14

15 ложения и движения деталей. В конечном итоге машина или ее механизмы не смогут выполнять экономично, а иногда и физически свое служебное назначение. Поэтому в дополнение к необходимости получения поверхностей деталей правильной геометрической формы добавляется требование обеспечения требуемой степени их шероховатости и качества поверхностного слоя материала. Одной из задач технологии машиностроения является экономичное получение деталей, имеющих требуемую точность размеров, поворота, геометрической формы поверхностей, требуемую их шероховатость и качество поверхностного слоя материала. Для этого исполнительные поверхности основных и вспомогательных баз деталей, как правило, подвергают обработке. Качество машины. Для того чтобы машина экономично выполняла свое служебное назначение, она должна обладать необходимым для этого качеством. Под качеством машины понимается совокупность ее свойств, определяющих соответствие ее служебному назначению и отличающих машину от других. Качество каждой машины характеризуется рядом методически правильно отработанных показателей, на каждый из которых должна быть установлена количественная величина с допуском на ее отклонения, оправдываемые экономичностью выполнения машиной ее служебного назначения. Система качественных показателей с установленными на них количественными данными и допусками, описывающая служебное назначение машины, получила название технических условий и норм точности на приемку готовой машины. К основным показателям качества машины относятся: стабильность выполнения машиной ее служебного назначения; качество выпускаемой машиной продукции, долговечность физическая, т. е. способность сохранять первоначальное качество во времени; долговечность моральная, или способность экономично выполнять служебное назначение во времени; производительность, безопасность работы; удобство и простота обслуживания управления; уровень шума, коэффициент полезного действия, степень механизации и автоматизации и т. д. Основные технические характеристики и качественные показатели некоторых машин и составляющих их частей, выпускаемых в больших количествах, стандартизованы. Точность обработки. Под точностью обработки понимают степень соответствия обработанной детали техническим требованиям чертежа в отношении точности размеров, формы и расположения поверхностей. Все детали, у которых отклонения показателей точности лежат в пределах, установленных допусков, пригодны для работы. В единичном и мелкосерийном производстве точность деталей получают методом пробных рабочих ходов, т. е. последовательным снятием слоя припуска, сопровождаемым соответствующими измерениями. В условиях мелкосерийного и среднесерийного производства применяют обработку с настройкой станка по первой пробной детали партии или по эталонной детали. В крупносерийном и массовом производствах точность детали обеспечивают методом 15

16 автоматического получения размеров на предварительно настроенных станкахавтоматах, полуавтоматах или автоматических линиях. В условиях автоматизированного производства в станок встраивают наладчики, представляющий собой измерительное и регулировочное устройство, которое в случае выхода размера обрабатываемой поверхности за пределы поля допуска автоматически вносит поправку в систему «станок-приспособление инструмент-заготовка» (технологическая система) и подналаживают ее на заданный размер. На станках, выполняющих обработку за несколько рабочих ходов (например, на круглошлифовальных), применяют устройства активного контроля, которые измеряют размер детали в процессе обработки. При достижении заданного размера устройства автоматически отключают подачу инструмента. Применение этих устройств повышает точность и производительность обработки путем уменьшения времени на вспомогательные операции. Эта цель достигается также путем оснащения металлорежущих станков системами адаптивного управления процессом обработки. Система состоит из датчиков получения информации о ходе обработки и регулирующих устройств, вносящих в нее поправки. На точность обработки влияют: погрешности станка и его износ; погрешность изготовления инструментов, приспособлений и их износ; погрешность установки заготовки на станке; погрешности, возникающие при установке инструментов и их настройке на заданный размер; деформации технологической системы, возникающие под действием сил резания; температурные деформации технологической системы; деформация заготовки под действием собственной массы, сил зажима и перераспределения внутренних напряжений; погрешности измерения, которые обусловлены неточностью средств измерения, их износом и деформациями и др. Эти факторы непрерывно изменяются в процессе обработки, вследствие чего появляются погрешности обработки. Собственная точность станков (в ненагруженном состоянии) регламентирована стандартом для всех типов станков. При эксплуатации происходит изнашивание станка, в результате чего собственная точность его снижается. Износ режущего инструмента влияет на точность обработки в партии заготовок при одной настройке станка (например, при растачивании отверстий износ резца приводит к появлению конусообразности). Погрешности, допущенные при изготовлении и износе приспособления, приводят к неправильной установке заготовки и являются причинами появления погрешностей обработки. В процессе обработки под действием сил резания и создаваемых ими моментов элементы технологической системы изменяют относительное пространственное положение из-за наличия стыков и зазоров в парах сопрягаемых деталей и собственных деформаций деталей. В результате возникают погрешности обработки. Упругая деформация технологической системы зависит от силы резания и жесткости этой системы. Жесткостью J технологической системы называют отношение приращения нагрузки Р к вызванному им приращению У мм, упругого обжатия: J = Р/ У 16

17 Применительно к станку под жесткостью понимают его способность сопротивляться появлению упругих обжатий под действием сил резания. Как правило, жесткость станка определяет экспериментальным путем. Процесс резания сопровождается выделением теплоты. В результате изменяется температурный режим технологической системы, что приводит к дополнительным, пространственным перемещениям элементов станка вследствие изменения линейных размеров деталей и появлению погрешностей обработки. Заготовки, имеющие малую жесткость (L/D>10, где L длина заготовки; D ее диаметр), под действием сил резания и их моментов деформируются. Например, длинный вал небольшого диаметра при обработке на токарном станке в центрах прогибается. В результате диаметр на концах вала получают меньше, чем в середине, т. е. возникает бочкообразность. В отливках и кованых заготовках в результате неравномерного остывания возникают внутренние напряжения. При резании вследствие снятия верхних слоев материала заготовки происходят перераспределение внутренних напряжений и ее деформация. Для уменьшения напряжений отливки подвергают естественному или искусственному старению. Внутренние напряжения появляются в заготовке при термической обработке, холодной правке и сварке. Под достижимой точностью понимают точность, которая может быть обеспечена при обработке заготовки рабочим высокой квалификации на станке, находящемся в нормальном состоянии, при максимально возможных затратах труда и времени на обработку. Экономическая точность такая точность, для обеспечения которой затраты при данном способе обработки будут меньше, чем при использовании другого способа обработки той же поверхности. Точность деталей. Точность деталей это степень приближения формы детали к геометрически правильному ее прототипу. За меру точности детали принимают значения допусков и отклонений от теоретических значений показателей точности, которыми она характеризуется. Стандартами, введенными в действие в качестве государственных стандартов, а также ГОСТ, ГОСТ, ГОСТ установлены следующие показатели точности: 1) точность размеров, т. е. расстояний между различными элементами деталей и сборочных единиц; 2) отклонение формы, т. е. отклонение (допуск) формы реальной поверхности или реального профиля от формы номинальной поверхности или номинального профиля; 3) отклонение расположения поверхностей и осей детали, т. е. отклонение (допуск) реального расположения рассматриваемого элемента от его номинального расположения. Шероховатость поверхности не входит в отклонение формы. Иногда допускается нормировать отклонение формы, включая шероховатость поверхности. Волнистость включается в отклонение формы. В обоснованных случаях допускается нормировать отдельно волнистость поверхности или часть отклонения формы без учета волнистости. Точность размеров детали характеризуется допуском Т, который определяют как разность двух предельных (наибольшего и наименьшего) допустимых 17

18 размеров. Величина допуска Т зависит от размера квалитета. Например, размер, выполняемый по 7-му квалитету, более точный, чем такой же размер, выполненный по 8-му или 10-му квалитету. Точность размеров на чертежах проставляют условными обозначениями поля допуска (40Н7; 50К5) или предельных отклонений в миллиметрах, или условными обозначениями полей допусков и отклонений. Точность размеров грубее 13-го квалитета оговаривают в технических требованиях, где указывают, по какому квалитету их следует выполнять. Например, «неуказанные предельные отклонения размеров: отверстий Н14, валов h 14». Точность формы характеризуется допуском Т или отклонениями от заданной геометрической формы. Стандарт рассматривает допуски и отклонения двух форм поверхностей; цилиндрических и плоских. Количественно отклонение формы оценивают наибольшим расстоянием от точек реальной поверхности (профиля) до прилегающей поверхности (профилю). Допуск формы наибольшее допустимое значение отклонения формы. Отклонения формы отсчитывают по нормали от прилегающих прямых, плоскостей, поверхностей и профиля. Отклонение от плоскостности наибольшее расстояние от точек реальной поверхности до прилегающей плоскости в пределах нормируемого участка. Частными видами отклонений от плоскости являются выпуклость и вогнутость. Отклонение формы цилиндрических поверхностей характеризуются допуском цилиндричности, который включает отклонение от круглости поперечных сечений и профиля продольного сечения. Частными видами отклонений от округлости являются овальность и огранка. Отклонения профиля в продольном сечении характеризуются допуском прямолинейности образующих и разделяются на конусообразность, бочкообразность и седлообразность. Точность расположения осей характеризуется отклонениями расположения. При оценке отклонений расположения отклонения формы рассматриваемых и базовых элементов исключают из рассмотрения. При этом реальные поверхности (профили) заменяют прилегающими, а за оси плоскости симметрии и центры реальных поверхностей или профилей принимают оси, плоскости симметрии и центры прилегающих элементов. Отклонение от параллельности плоскостей разность наибольшего и расстояний между плоскостями в пределах нормируемого участка. Отклонение от параллельности осей (или прямых) в пространстве геометрическая сумма отклонений от параллельности проекций осей (прямых) в двух взаимно перпендикулярных плоскостях; одна из этих плоскостей является общей плоскостью осей. Отклонение от перпендикулярности плоскостей отклонение угла между плоскостями от прямого угла (90), выраженное в линейных единицах на длине нормируемого участка. Отклонение от соосности относительно общей оси наибольшее рас- 18

19 стояние (1, 2,...) между осью рассматриваемой поверхности вращения и общей осью двух или нескольких поверхностей вращения на длине нормируемого участка. Кроме термина «отклонение от соосности», в отдельных случаях может применяться понятие отклонения от концентричности расстояние в заданной плоскости между центрами профилей (линий), имеющих номинальную форму окружности. Допуск концентричности Т определяется в диаметральном и радиусном выражениях. Отклонение от симметричности относительно базового элемента это наибольшее расстояние между плоскостью симметрии (осью) рассматриваемого элемента (или элементов) и плоскостью симметрии базового элемента в пределах нормируемого участка. Этот допуск определяется в диаметральном и радиусном выражениях. Отклонение от симметричности относительно базовой оси определяется в плоскости, проходящей через базовую ось перпендикулярно к плоскости симметрии. Позиционное отклонение наибольшее расстояние между реальным расположением элемента (его центра, оси или плоскости симметрии) и его номинальным расположением в пределах нормируемого участка. Позиционный допуск определяется в диаметральном и радиусном выражениях. Отклонения от пересечения осей наименьшее расстояние между осями, номинально пересекающимися. Радиальное биение разность наибольшего и наименьшего расстояний от точек реального профиля поверхности вращения до базовой оси в сечении плоскостью, перпендикулярно к базовой оси. Радиальное биение является результатом совместного проявления отклонений от круглости профиля рассматриваемого сечения и отклонения его центра относительно базовой оси. Оно не включает в себя отклонение формы и расположения образующей поверхности вращения. Торцовое биение разность наибольшего и наименьшего расстояний от точек реального профиля торцовой поверхности до плоскости, перпендикулярной к базовой оси. Допуски формы и расположения указывают на чертежах согласно ГОСТ Вид допуска формы или расположения должен быть обозначен на чертеже знаком. Для допусков расположения и суммарных допусков формы и расположения дополнительно указывают базы, относительно которых задается допуск, и оговаривают зависимые допуски расположения или формы. Знак и значение допуска или обозначение базы вписывают в рамку допуска, разделенную на два или три поля, в следующем порядке (слева направо): знак допуска, значение допуска в миллиметрах, буквенное обозначение базы (баз). Рамки допуска вычерчивают сплошными тонкими линиями или линиями одинаковой толщины с цифрами. Высота цифр и букв, вписываемых в рамки, должна быть равна размеру шрифта размерных чисел. Допуски формы и расположения поверхностей выполняют предпочтительно в горизонтальном положении, при необходимости рамку располагают вертикально так, чтобы данные находились с правой стороны чертежа. 19

20 Линией, оканчивающейся стрелкой, рамку допуска соединяют с контурной или выносной линией, продолжающей контурную линию элемента, ограниченного допуском. Соединительная линия должна быть прямой или ломаной а ее конец, оканчивающийся стрелкой, должен быть обращен к контурной (выносной) линии элемента, ограниченного допуском в направлении измерения отклонения. В случаях, когда это оправдано удобствами выполнения чертежа, допускается: начинать соединительную линию от второй (задней) части рамки допуска; заканчивать соединительную линию стрелкой на выносной линии, продолжающей контурную линию элемента, и со стороны материала детали. Если допуск относится к поверхности или ее профилю (линии), а не к оси элемента, то стрелку располагают на достаточном расстоянии: от конца размерной линии. Если допуск относится к оси или плоскости симметрии определенного элемента, то конец соединительной линии должен совпадать с продолжением размерной линии соответствующего размера. При недостатке места на чертеже стрелку размерной линии можно заменить стрелкой выносной линии. Если размер элемента уже указан один раз на других размерных линиях данного элемента, используемых для обозначения допуска формы или расположения, то он не указывается. Размерную линию без размера следует рассматривать как составную часть этого обозначения. Если допуск относится к боковой поверхности резьбы, то рамку допуска соединяют. Если допуск относится к оси резьбы, то рамку допуска соединяют с размерной линией. Если допуск относится к общей оси или плоскости симметрии и из чертежа ясно, для каких элементов данная ось (плоскость) является общей, то соединительную линию проводят к общей оси. Величина допуска действительна для всей поверхности или длины элемента. Если допуск должен быть отнесен к определенной ограниченной длине, которая может находиться в любом месте ограниченного допуском элемента, то длину нормируемого участка в миллиметрах вписывают после значения допуска и отделяют от него наклонной линией. Если допуск задан таким образом на плоскости, данный нормируемый участок действителен для произвольного расположения и направления на поверхности. Если необходимо задать допуск по всему элементу и одновременно задать допуск на определенном участке, то второй допуск указывают под первым в объединенной рамке допуска. Если допуск должен относиться к нормируемому участку, расположенному в определенном месте элемента, то нормируемый участок обозначают и штрихпунктирной линией, ограничив ее размерами. Дополнительные данные пишут над или под рамкой допуска. Если необходимо для одного элемента задать два разных вида допуска объединяют и располагают их в рамке допуска. Если для поверхности надо одновременно указать обозначение допуска формы или расположения и буквенное обозначение поверхности, используемое для нормирования другого допуска, то рамки с обоими обозначениями располагают рядом на одной соедини- 20

21 тельной линии. Повторяющиеся одинаковые или разные виды допусков обозначаем одним и тем же символом, имеющие одни и те же значения и относящиеся к одним и тем же базам указывают один раз в рамке, от которой отходит одна соединительная линия, разветвляемая затем ко всем нормируемым элементам. Базы обозначают зачерненным треугольником, который линией соединяют с рамкой допуска. Треугольник, обозначающий базу, должен быть равносторонним с высотой, равной размеру шрифта размерных чисел. Если треугольник нельзя простым и наглядным способом соединить с рамкой допуска, то базу обозначают прописной буквой в рамке и эту букву вписывают в третье поле рамки допуска. Если базой является поверхность или прямая этой поверхности, а не ось элемента, то треугольник должен располагаться на достаточном расстоянии от конца размерной линии. Если базой является ось или плоскость симметрии, то треугольник располагают в конце размерной линии соответствующего размера (диаметра, ширины) элемента, при этом треугольник может заменить размерную стрелку. Если базой является общая ось или плоскость симметрии и из чертежа ясно, для каких элементов данная ось (плоскость) является общей, то треугольник располагают на общей оси. Если базой является только часть или определенное место элемента, то ее расположение ограничивают размерами. Если два или несколько элементов образует общую базу и их последовательность не имеет значения (например, они имеют общую ось или плоскость симметрии), то каждый элемент обозначают самостоятельно и обе (все) буквы вписывают подряд в третье поле рамки допуска. Если назначают допуск расположения для двух одинаковых элементов, и нет необходимости или возможности (у симметричной детали) различать элементы и выбрать один за базу, то вместо зачерненного треугольника используют стрелку. Таким образом, необходимо следующее: 1) измерение точности детали должно начинаться с измерения микронеровностей, затем должны измеряться микронеровности, отклонения от требуемого поворота и, наконец, точность расстояния или размера (если не предпринимать особых мер для исключения влияния соответствующих отклонений); 2) допуски на расстояния и размеры поверхностей детали должны быть больше допусков на величину отклонений от требуемого поворота поверхностей, которые, в свою очередь, должны быть больше допусков на микрогеометрические отклонения, а последние больше допусков на микрогеометрические отклонения, зависящие от назначаемого класса шероховатости поверхностей. Лекция 3. Рабочая документация технологического процесса Согласно ГОСТ Единой системы технологической документации (ЕСТД) «Комплектность документов в зависимости от типа производства» 21

22 документы, необходимые для описания технологических процессов, подбирают в зависимости от типа производства. Кроме вышеперечисленных видов технологических процессов по организации (единичной и типовой), ГОСТ установлено, что каждый вид технологического процесса по степени детализации содержания разделяется на маршрутный, операционный и маршрутнооперационный. Маршрутный технологический процесс процесс, выполняемый по документации, в которой излагается содержание операций без указаний переходов и режимов обработки. Операционный технологический процесс процесс, выполняемый по документации, в которой излагается содержание операций с указанием переходов и режимов обработки. Маршрутно-операционный процесс процесс, выполняемый по документации, в которой излагается содержание отдельных операций без указаний переходов и режимов обработки. Комплект форм документов общего назначения для технологического процесса может содержать: маршрутную карту (МК); операционную карту (ОК); карту эскизов (КЗ); ведомость деталей к типовому (групповому) технологическому процессу (операции) (ВТП, ВТО); сводную операционную карту (СОК) и др. Маршрутная карта (ГОСТ) содержит описание технологического процесса изготовления и контроля детали по всем операциям и технологической последовательности. В ней указывают соответствующие данные об оборудовании, оснастке, материальных и трудовых нормативах. В операционную карту вносят описание операции, расчлененной на переходы, с указанием оборудования, оснастки и режимов обработки. ОК применяют в серийном и массовом производстве. К комплекту ОК на все операции технологического процесса прилагают маршрутную карту. При проектировании операций для станков с ЧПУ составляют расчетно-технологическую карту, в которую заносят необходимые данные о траектории движения инструмента и режимах обработки. На основе этой карты разрабатывают управляющую программу станком. МК и ОК составляют на основе данных чертежей, производственной программы, спецификации, описания конструкций, технических условий и следующих руководящих и нормативных материалов: паспорта металлорежущих станков; каталогов станков, режущих и вспомогательных инструментов, альбомов нормальных приспособлений; руководящих материалов по режимам резания; нормативов подготовительно-заключительного и вспомогательного времени. МК имеет определенную форму. В ее верхнюю часть заносят данные об изготовляемой детали и заготовке, в нижнюю номер, наименование и содержание операций, а также необходимые для выполнения операций коды, наименования и данные станков, приспособлений, режущих и измерительных инструментов, указывают штучное время, число рабочих и подготовительно- 22


Нормирование точности и технические измерения Основные понятия о точности в машиностроении Точность это степень приближения значения параметра изделия, процесса и т. д. к его заданному значению. Точность

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР Единая система конструкторской документации УКАЗАНИЕ НА ЧЕРТЕЖАХ ДОПУСКОВ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ Unified system for design documentation. Representation of

Лекция 9 ДОПУСКИ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТИ Модуль - 3, тема - 9 Цель: изучение принципов выбора допусков формы и расположения поверхностей, непосредственно связанных с обеспечением высокой эффективности

Имя ТЗ 1ТМ 2ТМ 3ТМ 4ТМ 5ТМ 6ТМ 7ТМ Тестовые задания для аттестации инженерно-педагогических работников ГБОУ НиСПО Дисциплина «Технология машиностроения» Специальность Технология машиностроения Формулировка

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ГОСТ 30893.2-2002. Основные нормы взаимозаменяемости. Общие допуски. Допуски формы и расположения поверхностей, не указанные индивидуально. Дата введения 1 января 2004 г. Взамен ГОСТ 25069-81 1 Область

«Смоленский промышленно-экономический колледж» Тесты по дисциплине «Технология машиностроительного производства» специальность 151001 Технология машиностроения Смоленск Уровень А 1. Массовое производство

Часть 1. Теоретические основы технологии машиностроения 1.1. Введение. Машиностроение и его роль в ускорении технического процесса. Задачи и основные направления развития машиностроительного производства.

ОБЩИЕ СВЕДЕНИЯ Цель изучение основных общетехнических терминов и понятий, необходимых в освоении знаний практической технологии и используемых при выполнении работ учебно-технологического практикума в

СТАНДАРТИЗАЦИЯ НОРМ, ВЗАИМОЗАМЕНЯЕМОСТЬ Взаимозаменяемость принцип конструирования и изготовления деталей, обеспечивающий возможность сборки и замены при ремонтах независимо изготовленных с заданной точностью

ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ Понятие о производственном и технологическом процессах. Структура технологического процесса (ГОСТ 3.1109-83). Виды и типы производства. Технологические характеристики типов производства

Теоретическое задание заключительного этапа Всероссийской олимпиады профессионального мастерства обучающихся по специальности среднего профессионального образования 15.02.08 ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ Вопросы

1 Цели и задачи дисциплины 1.1 Изучение основ технологической науки и практики. 1. Приобретение навыков разработки технологических процессов механическоой обработки деталей и сборки узлов автомобилей.

ВВЕДЕНИЕ 10 РАЗДЕЛ 1. МАШИНА КАК ОБЪЕКТ ПРОИЗВОДСТВА 12 1.1 Понятие машины и её служебного назначения 12 1.2 Технические параметры и параметры качества машины 13 1.3 Содержание и структура жизненного цикла

ГОСТ 24643-81. Основные нормы взаимозаменяемости. Допуски формы и расположения поверхностей. Числовые значения. Дата введения 1 июля 1981 г. Взамен ГОСТ 10356-63(в части разд. 3) 1. Настоящий стандарт

ПРОГРАММА ВСТУПИТЕЛЬНЫЙ ИСПЫТАНИЙ по предмету «ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ» Введение Цели, задачи, предмет дисциплины, её роль и взаимосвязь с другими дисциплинами. Значение дисциплины в системе подготовки

ГОСТ 2.308-2011 Группа Т52 МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ Единая система конструкторской документации УКАЗАНИЯ ДОПУСКОВ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ Unified system of design documentation. Representation

СОДЕРЖАНИЕ Введение... 3 РАЗДЕЛ I. ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КАЧЕСТВА ИЗДЕЛИЙ В МАШИНОСТРОЕНИИ Глава 1. Точность изделий и способы ее обеспечения в производстве... 7 1.1. Изделия машиностроительного

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский экономический университет имени Г.В. Плеханова» ОСНОВЫ

Введение... 3 РАЗДЕЛ I. ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КАЧЕСТВА ИЗДЕЛИЙ В МАШИНОСТРОЕНИИ Глава 1. Точность изделий и способы ее обеспечения в производстве... 7 1.1. Изделия машиностроительного производства

Т е м а 6. ОБРАБОТКА ОТВЕРСТИЙ Цель изучение технологических возможностей лезвийной обработки отверстий на вертикально сверлильных и координатно расточных станках, основных узлов станков и их назначения,

Разработка технологических процессов (ТП) механической обработки является сложной, комплексной, вариантной задачей, требующей учета большого числа разнообразных факторов. В комплекс кроме разработки собственно

Косилова А.Г. Справочник технолога-машиностроителя. Том 1 Автор: Косилова А.Г. Издательство: Машиностроение Год: 1986 Страниц: 656 Формат: DJVU Размер: 25М Качество: отличное Язык: русский 1 / 7 В 1-м

Т е м а 5. МНОГОИНСТРУМЕНТАЛЬНАЯ ОБРАБОТКА ЗАГОТОВОК Цель изучение технологических возможностей многоинструментальной обработки на токарно-револьверном станке, основных узлов станка и их назначения; приобретение

Вопросы для подготовки к рубежному контролю 3 по курсу «Инженерная графика» для студентов кафедры СМ-10 «Колесные машины» (четвертый семестр) 1-я группа вопросов 1. Дайте определение документа «Чертеж

Аннотация дисциплины «Технология конструкционных материалов» Направление подготовки 150700.62 Общая трудоемкость изучаемой дисциплины составляет 4 ЗЕТ(144 час.). Цели и задачи дисциплины: Целью дисциплины

Проект Утвержден приказом Министерства труда и социальной защиты Российской Федерации ПРОФЕССИОНАЛЬНЫЙ СТАНДАРТ СПЕЦИАЛИСТ ПО ТЕНОЛОГИЯМ МЕАНОСБОРОЧНОГО ПРОИЗВОДСТВА 2 ПРОФЕССИОНАЛЬНЫЙ СТАНДАРТ СПЕЦИАЛИСТ

ГОСТ 30893.2-2002 (ИСО 2768-2-89) Группа Г12 МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ Основные нормы взаимозаменяемости ОБЩИЕ ДОПУСКИ Допуски формы и расположения поверхностей, не указанные индивидуально Basic norms

РАЗМЕРЫ И ИХ ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ На чертеже должно быть задано минимальное число но достаточное для изготовления и контроля изделия. Каждый размер на чертеже следует приводить лишь один раз. Размеры,

1 Цели и задачи дисциплины 1.1 Дать студентам основы знаний о современном машиностроительном производстве и технологических процессах изготовления изделий в машиностроении. 1.2 Дать базовые знания по специальным

ОГЛАВЛЕНИЕ Введение................................................................ 5 Глава 1. Основные понятия и определения.................................... 7 1.1. Производственный процесс в машиностроении.....................

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ. ОП.05 «Общие основы технологии металлообработки и работ на металлорежущих станках» Наименование разделов и тем Тема 1. Физические основы процесса резания

Аннотация к рабочей программе дисциплины «Технология конструкционных материалов» Цель преподавания дисциплины Целью дисциплины является получение студентами общеинженерной технологической подготовки, которая

АННОТАЦИЯ ДИСЦИПЛИНЫ «ВЗАИМОЗАМЕНЯЕМОСТЬ И НОРМИРОВАНИЕ ТОЧНОСТИ» Целью освоения дисциплины является: подготовка специалистов, способных решать задачи анализа, нормирования, стандартизации и контроля точности

ВОПРОСЫ, КОТОРЫЕ БЫЛИ ЗАДАНЫ НА ЗАЩИТЕ ДИПЛОМНЫХ ПРОЕКТОВ ПО РЕМОНТУ ОБОРУДОВАНИЯ 1.1 Техническая эксплуатация технологического оборудования 1. Опишите основной принцип действия узла своего станка. 2.

ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОЦЕССА ОЦЕНКИ ОСТАТОЧНОГО РЕСУРСА МЕТАЛЛООБРАБАТЫВАЮЩЕГО СТАНКА Зайцев Роман Владимирович ФГУП «НПО Астрофизика», г.москва [email protected] Во время эксплуатации приходится

АННОТАЦИИ РАБОЧИХ ПРОГРАММ ПРОФЕССИОНАЛЬНЫХ МОДУЛЕЙ программы подготовки специалистов среднего звена базовой подготовки по специальности среднего профессионального образования 15.02.08 «Технология машиностроения»

Лекция 5. Автоматизация управления технологическим процессом с целью повышения точности и производительности обработки Цели и желаемый результат. Изучить принцип работы системы управления с отрицательной

ПРАВИЛА НАНЕСЕНИЯ РАЗМЕРОВ НА ЧЕРТЕЖАХ ОГЛАВЛЕНИЕ 1. Понятие размеров на чертеже... 2 2. Виды размеров детали... 2 3. Размерные элементы... 3 4. Условные знаки... 6 5. Способы нанесения размеров... 8 6.

Министерство образования Нижегородской области ГБОУ СПО Нижегородский автотранспортный техникум М Е Т О Д И Ч Е С К О Е П О С О Б И Е По выполнению части дипломного проекта, связанной с разделом «Допуски

ОГЛАВЛЕНИЕ Список принятых сокращений.............................. 3 Предисловие............................................ 4 Введение............................................... 7 Глава первая Исходная

Объектами машиностроительного производства являются машины различного назначения. Технологический процесс изготовления машин предусматривает производство деталей, сборочных единиц (узлов) и изделий. Изделие

УДК 621.813 ВЛИЯНИЕ ЛЮНЕТОВ НА ТОЧНОСТЬ И КАЧЕСТВО ЗАГОТОВОК ПРИ ОБРАБОТКЕ ТОЧЕНИЕМ Власов М.В., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Технологии обработки материалов» Научный

Министерство образования и науки российской федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный машиностроительный

ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ (КРАТКИЕ СВЕДЕНИЯ) Поверхность детали после механической обработки не бывает абсолютно гладкой, так как режущий инструмент оставляет на ней следы в форме микронеровностей выступов

КИНЕМАТИЧЕСКАЯ СХЕМА План 1. Правила выполнения схем 1.1. Общие требования к выполнению схем 1.2. Условные графические обозначения элементов 1.3. Позиционные обозначения элементов 1.4. Перечень элементов

Т е м а 13. ТОЧНОСТЬ ФОРМООБРАЗОВАНИЯ ПРИ РЕЗАНИИ Цель изучение взаимодействия инструмента и заготовки, видов отклонения формы поверхности заготовки, возникающих при резании; исследование влияния факторов

Глава 2 ВЫЯВЛЕНИЕ ТЕХНОЛОГИЧЕСКИХ РАЗ- МЕРНЫХ ЦЕПЕЙ При разработке технологических процессов изготовления деталей следует обязательно выявлять технологические размерные цепи (связи). Построение размерных

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Ижевский государственный технический университет» Воткинский филиал Смирнов В.А. Методические

УДК 621.9.015 + 621.92.06-529 ОСОБЕННОСТИ МОДЕЛИРОВАНИЯ ОБРАБОТКИ ОТВЕРСТИЙ НА СТАНКАХ С ЧПУ С.П. Пестов Предложен подход к моделированию точности обработки отверстий концевыми мерными инструментами на

А. П. ОСИПОВ С. П. ПЕТРОВА ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ Учебное пособие Самара Самарский государственный технический университет 2014 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Т е м а 1. КИНЕМАТИЧЕСКИЕ ОСНОВЫ ФОРМООБРАЗОВАНИЯ РЕЗАНИЕМ Цель изучение кинематики формообразования поверхностей резанием, основных элементов и геометрических параметров режущего инструмента. Содержание

УДК 621.01 ТЕОРИЯ И ПРАКТИКА БАЗИРОВАНИЯ В МЕХАНООБРАБОТКЕ В.Г. Прохоров, Г.И. Рогозин Точность обработки на металлорежущих станках обусловлена воздействием многочисленных случайных факторов, среди которых

1. Понятие размеров на чертеже Одной из важнейших составляющих чертежа являются размеры. Размер число, характеризующее величину отрезка прямой, дуги или угла. Размеры на чертежах проставляют так, чтобы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЙ ТЕХНИЧЕСКИПЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПОДГОТОВКИ ИНЖЕНЕРНЫХ КАДРОВ Кафедра «Технология машиностроения» Технология машиностроения

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Общие основы технологии металлообработки и работ на металлорежущих станках СОДЕРЖАНИЕ стр. 1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 4. СТРУКТУРА И СОДЕРЖАНИЕ