Принцип работы четырехстороннего станка. Четырехсторонние станки по дереву

Таблица. Характеристики некоторых четырехсторонних станков (характеристики — компания-продавец, модель, количество шпинделей, ширина обрабатываемой заготовки, высота обрабатываемой заготовки, минимальная длина заготовки, диаметр шпинделя, частота вращения, скорость подачи, длина загрузочного стола, наличие фуговального суппорта, мощность двигателя 1 и 4 шпинделя, мощность двигателя 2 и 3 шпинделя, наличие калевочного суппорта, возможные положения калевочного суппорта, мощность двигателя калевочного суппорта, мощность двигателя подачи, мощность двигателя подъема траверсы, суммарная мощность двигателей станка, габариты станка, вес базового станка; компания производитель — БЗДС С23-4, Winner, Nortec, Gau Jing Machinery Industrial Co. Ltd GA-623H, Nortec, Machinery Industrial Co. Ltd GN-6S23, Griggio S.p.A. G 240/5, Griggio S.p.A. G 240/6, БЗДС С25-5a Pro, SCM Group Superset NT Plus, High Point M-180, High Point MX-180/5, Ledinek Superles 4V-S150, REX Bigmaster 310-K, SCM Group Topset Master, REX Timbermaster Type U-41-K, MIDA Alfa-500)

Рисунок 1. Схемы механизмов подачи

Рисунок 2. Схема карданного привода роликов механизма подачи с использованием червячных редукторов

Рисунок 3. Варианты расположения шпинделей в четырехсторонних станках

Таблицу и рисунки смотрите в

И от того, насколько равномерным будет это перемещение, во многом зависит качество обрабатываемых деталей.

Механизмы подачи на четырехсторонних станках

Механизмы подачи четырехсторонних станков относятся к устройствам с фрикционной связью между заготовкой и подающими ее органами. Перемещение заготовок происходит за счет сцепления их поверхности с движущимися рабочими элементами конвейера подачи. При этом преодолевается сопротивление в виде приложенных к ним сил трения и продольных составляющих сил резания.

В четырехсторонних станках использовались и используются концентрированные механизмы подачи трех видов: гусеничный, вальцово-гусеничный, вальцовый - и распределенные - роликовые (рис. 1).

Гусеничные механизмы подачи отличаются надежностью захвата продвигаемых по столу заготовок, что исключает их проскальзывание, и равномерностью распределения вертикального усилия, что уменьшает распрямление покоробленных заготовок. Такие механизмы используются для подачи коротких заготовок (например, в отечественных станках моделей «ПАРК-8» и «ПАРК-9», предназначенных для обработки паркетной клепки) и во многих современных четырехсторонних станках на базе двухсторонних фуговально-рейсмусовых - в зоне фуговального суппорта.

Вальцово-гусеничные механизмы также отличаются надежностью захвата и высоким усилием подачи заготовок. Используются преимущественно в станках для обработки тяжелых заготовок большого сечения, например, стенового бруса.

Вальцовые, состоящие из вальцов (вальцы - пара параллельных приводных валов, вращающихся навстречу друг другу), применялись в четырехсторонних станках изначально. Эти механизмы отличаются простой конструкцией, надежностью и невысокой чувствительностью к разнотолщинности продвигаемых заготовок.

Общий недостаток концентрированных механизмов подачи всех трех названных видов - продвижение коротких заготовок торец в торец; при косо обрезанных торцах возможно выдавливание заготовок в сторону и вверх, что приводит к необходимости увеличивать усилие верхних и боковых прижимов в станке, ведущее к повышению требуемого усилия подачи.

Поэтому в конструкции большинства выпускаемых сегодня четырехсторонних станков применяется распределенный механизм подачи в виде набора приводных роликов, расположенных друг за другом по всей длине рабочего стола.

Впервые четырехсторонний станок с таким распределенным механизмом подачи был представлен в 1960 году немецкой фирмой Harbs, а сегодня ими оснащается подавляющее большинство четырехсторонних станков. Достоинство роликового механизма - возможность подачи заготовок с межторцевым разрывом и обработки только одной заготовки, которая, не будучи подталкиваемой другими, следующими за ней, свободно проводится приводными роликами через весь станок. Причем и при подаче заготовок торец в торец последняя загруженная заготовка не остается зажатой в станке.

Ролики такого механизма подачи устанавливаются на единой балке на качающихся рычагах и одновременно играют роль верхних прижимов. В старых моделях станков прижим этих роликов к заготовкам выполнялся пружинами, а сегодня для этих целей используются пневмоцилиндры. Подъем балки вместе со всеми роликами и прижимами для настройки на размер обработки осуществляется с помощью моторизованного привода, что позволяет также получить свободный доступ к рабочему столу станка и его шпинделям для их осмотра и замены фрез.

Рабочая поверхность подающих роликов в станках рифленая. Приводные ролики, установленные за фрезой, осуществляющей окончательную обработку, покрываются слоем износостойкой пластмассы.

Привод подачи на четырехсторонних станках

Рис. 2. Схема карданного привода роликов механизма подачи с
использованием червячных редукторов:
1 - балка;
2 - качающийся рычаг;
3 - подающий ролик;
4 - шпиндель подающего ролика;
5 - ось вращения червяков редукторов;
6 - червячный редуктор;
7 - карданный вал;
8 - рабочий стол станка;
9 - направляющая линейка

Первоначально привод вращения роликов таких механизмов подачи осуществлялся от общего вала, проходившего через всю подъемную балку, посредством конических зубчатых и цепных передач.

Но в 1970 году немецкая фирма Gubisch разработала четырехсторонний продольно-фрезерный станок
мод. GN14, в котором впервые был применен карданный привод вальцов механизма подачи, используемый сегодня в конструкциях почти всех аналогичных станков. В таком приводе каждый из подающих роликов через карданную передачу присоединен к выходному валу своего червячного редуктора, а расположенные на одной оси червяки всех этих редукторов соединены муфтами и вращаются одновременно одним приводом (рис. 2), который также крепится на балке и поднимается вместе с ней.

В качестве такого привода для вращения роликов изначально использовались электродвигатели с вариаторами различной конструкции, обеспечивавшими бесступенчатое регулирование скорости подачи. В современных станках взамен вариаторов используется частотное регулирование скорости вращения электродвигателя механизма подачи с использованием электронных преобразователей.

Суппорты на четырехсторонних станках


Любой четырехсторонний станок оснащается как минимум четырьмя суппортами: горизонтальными (нижним и верхним) и вертикальными (левым и правым). При этом левые суппорты могут быть наклоняемыми. В так называемых калевочных станках применяется дополнительный универсальный суппорт - калевочный.

В целях унификации каждый изготовитель оборудования старается сделать все эти суппорты одинаковыми. Однако на их конструкцию значительное влияние оказывает необходимость настроечных перемещений. Так, для нижних и правых по подаче шпинделей требуется радиальная настройка, и ее величина минимальна, поскольку она необходима только для регулирования припуска, снимаемого установленной на них фрезой. В то же время все левые и верхние шпиндели при настройке на размер обрабатываемой заготовки должны смещаться в значительных пределах. У всех шпинделей, как правило, также имеется возможность осевого перемещения для настройки положения профильных фрез.

В зависимости от конструкции, разработанной изготовителем станка, шпинделем служит или вал электродвигателя (мотор-шпиндели), или вал, установленный в подшипниках и приводимый во вращение электродвигателем через ременную передачу. В наиболее простых и дешевых станках один электродвигатель может вращать одновременно два вертикальных шпинделя.

Для передачи вращения электродвигателя к шпинделю в устаревших моделях используются клиновые ремни, а в современных - тонкие синтетические.

Точность и жесткость шпинделей во многом определяется подшипниками, в которых они установлены. Многие изготовители для удешевления своих станков применяют обычные подшипники, в то время как в дорогих и качественных используются подшипники повышенной точности.


Считается, что использование станков с мотор-шпинделями малоэффективно, так как при замене в них подшипников возможно нарушение балансировки ротора, что может привести к снижению качества обработки. Кроме того, в суппортах с ременной передачей ремень служит демпфером, что предотвращает перегрузку двигателя; его замена в случае выхода из строя обойдется дешевле, чем замена мотор-шпинделя.

Для осуществления настроечных перемещений суппорты устанавливаются на направляющие типа «ласточкин хвост» или на параллельные скалки. Перемещение суппортов по ним осуществляется посредством пары «винт - гайка», вращаемой вручную, с контролем положения по линейке с нониусной шкалой, или, в станках, оснащенных электронной системой управления, контролируемыми ею серводвигателями.

Калевочный суппорт четырехстороннего станка


Это название возникло от понятия «калевка» - профиль, выстрагиваемый на кромке заготовки. Свой первый калевочный станок в 1920 году сконструировал в Германии некто Армин Бернер. А в 1954 году немецкая фирма Weinig сообщила о получении патента на многоцелевой четырехсторонний станок с калевочным суппортом, переставляемым в различные положения.

Такой суппорт в зависимости от исполнения и модели четырехстороннего станка может работать по отношению к заготовке только снизу, снизу и слева, снизу и сверху, снизу и справа, а также снизу, сверху, слева, справа или наклоняться под любым углом.

Выбор технологических возможностей этого суппорта зависит от профилей сечения деталей, выпускаемых предприятием.

Калевочные суппорты на отечественных предприятиях в большинстве случаев, как правило, используются для выборки продольного углубления на нижней стороне обработанной детали, например, наличника, или для продольного раскроя фрезерованных заготовок на узкие детали.

Есть еще один нюанс: выбирая станок, многие производственники даже не задумываются о требуемой мощности этого шпинделя, что приводит к ошибкам при обработке деталей. Так, для простоты расчетов считается, что при раскрое пилами на выполнение одного пропила требуется мощность двигателя из расчета 1 кВт на 1 см толщины заготовки. То есть если с помощью калевочного шпинделя будет выполняться пиление заготовки толщиной 40 мм на три части (двумя пилами), то мощность его двигателя должна быть не меньше 8 кВт.


Мощность других шпинделей на четырехсторонних станках

Если провести несложный анализ коммерческих предложений на четырехсторонние станки, передаваемых нашими станкоторговыми компаниями своим потенциальным покупателям, то окажется, что мощность привода шпинделей в этом оборудовании почему-то очень часто одинакова.

Вместе с тем первая по подаче нижняя фреза в станке, создающая базу для дальнейшей обработки детали, снимает с заготовки довольно небольшой припуск, и требуемая мощность ее привода ниже, чем предлагают продавцы. Такой же недостаточной может быть мощность электродвигателя правой фрезы, поскольку она удаляет припуск на кромке заготовки, которая всегда заведомо уже наибольшей ширины пласти.

Наиболее мощным из всех перечисленных должен быть привод верхней горизонтальной фрезы, которой удаляется увеличенный припуск, включающий в себя все неточности размеров заготовки по толщине и ширине. Опыт показал, что мощность ее двигателя должна быть не менее 11 кВт. Причем и этого может оказаться недостаточно, если предполагается обработка глубоких профилей.

Недостаток мощности хотя бы одного, любого, шпинделя ведет к необходимости снижения скорости подачи, что уменьшает производительность станка.

Состав и расположение шпинделей четырехсторонних станков

На рис. 3 в качестве примера приведены некоторые из возможных вариантов взаимного расположения шпинделей в четырехсторонних станках. Производственники должны выбрать их заранее, до приобретения станка, исходя из требуемого профиля обрабатываемой детали.

Так, при расположении шпинделей, показанном на рис. 3.1, возможна обработка деталей, имеющих прямоугольный профиль или неглубокое профилирование с четырех сторон. Состав шпинделей, приведенный на рис. 3.2, дает возможность фрезеровать глубокий профиль на нижней пласти детали, а конфигурация шпинделей, показанная на рис. 3.3, - на правой (по подаче) кромке.

Если состав агрегатов станка соответствует представленному на
рис. 3.4, с помощью калевочного суппорта, помещаемого в различные положения, можно выполнять глубокие профили на всех поверхностях детали и осуществлять ее продольный раскрой.

Дополнительный нижний шпиндель, как в схеме, изображенной на рис. 3.5, дает возможность, например, при фуговании с использованием гребенчатого рабочего стола, выравнивать поверхность нижней пласти детали и фрезеровать на ней профиль посредством калевочного шпинделя.

Для выборки глубокого профиля по левой кромке и другим поверхностям детали служат дополнительный вертикальный и калевочный шпиндели (схема 3.6).

Расположение шпинделей, соответствующее схеме 3.7, позволяет получать U-образные профили, а изображенное на схеме 3.8 - Н-образные.

Схема расположения шпинделей, приведенная на рис. 3.9, дает возможность фрезерования профилей К-образного сечения, а схема, показанная на рис. 3.10, - еще более сложных, с дополнительными продольными канавками.

На станках, в которых шпиндели расположены в соответствии со схемами на рис. 3.11 и 3.12, можно получать профили Х-образного сечения.

Шпиндели могут быть последовательно расположены и в другом порядке, например, в таком, который позволяет распределить припуск, снимаемый при формировании профиля, на две или даже три фрезы. Кроме того, некоторые профили не могут быть получены без наклона хотя бы одного шпинделя.

Поэтому ведущие станкостроители по заказу того или иного потребителя могут изготовить четырехсторонние станки, у которых имеется десять и более шпинделей. Сегодня станки с нестандартным расположением шпинделей часто встречаются на рынке отремонтированного, бывшего в употреблении оборудования.

Шум от четырехсторонних станков


Во многих странах предельно допустимый уровень шума на рабочем месте законодательно установлен в пределах 85 децибел (дБ). Там, где уровень шума превышает это значение, должны применяться средства защиты. Фактически, 85 дБ - это предельный уровень шума, воздействие которого на человека может продолжаться восемь часов без ущерба для слуха. Увеличение этого уровня шума на 3 дБ соответствует удвоению интенсивности воздействия и уменьшению в два раза допустимого времени воздействия звука. При уровне 88 дБ допустимое время воздействия составит четыре часа, при 91 дБ - два часа и т. д. Это означает, что шум 110 дБ ухо может переносить всего несколько минут.

Но именно такой уровень шума характерен для всех работающих четырехсторонних станков. И его снижению не помогает даже наличие у оборудования шумопоглощающих кожухов, как правило, открытых сзади станка и имеющих скорее декоративное, чем защитное назначение. Поэтому такие станки на производствах следует помещать в специальную звукоизолирующую кабину (рис. 4), а станочники во время работы в обязательном порядке должны носить антифоны.

Четырехсторонние станки - один из основных видов оборудования на любом деревообрабатывающем предприятии, и от их правильного выбора часто зависит не только качество продукции, но и производительность предприятия. Это означает, что при выборе станка следует обращать внимание не только на его цену, нужно еще внимательно изучить конструкцию такого оборудования и предложения потенциальных поставщиков, в частности, сравнив их с потребностями предприятия, и только тогда принимать окончательное решение о приобретении.

Андрей МОРОЗОВ,
компания «МедиаТехнологии»,
по заказу журнала «ЛесПромИнформ»

Рис. 1. Станок четырехсторонний с ременным приводом всех агрегатов от единого трансмиссионного вала

И действительно, обтесывая и строгая бревно, плотник использует топор, тесло и скобель - инструмент простой и неточный. А вот столяр держит в своих руках такие замечательные струги, как рубанок, шерхебель, фуганок, зензубель, фальцгебель, шпунтубель, калевочник и другие, с помощью которых можно не только прострогать поверхность доски или бруска, но и с высокой точностью сформировать по всей их длине профильное сечение. Другое дело - каких затрат ручного труда и какой квалификации потребует эта работа...

Строгаем или фрезеруем?

Древесину умели строгать уже три тысячи лет назад, еще в Древнем Египте, а при раскопках города Помпеи, погибшего в 79 году н. э., были найдены рубанки, весьма схожие с современными.

Механизировать процесс строгания пытались все долгие столетия, прошедшие с тех пор. И если первый токарный станок был создан Диодором Сицилийским еще в 650-е годы до н. э., то такого, который можно было бы на 100% назвать строгальным, нет и сегодня. Вместо него у человечества имеются лишь заменяющие его фрезерные станки - фуговальные, рейсмусовые, фрезерные с вертикальным шпинделем (верхним или нижним) и четырехсторонние - в виде комбинации названных ранее, позволяющие обрабатывать заготовку за один проход последовательно со всех четырех сторон. Но поскольку их применение позволило отказаться от строгания вручную, еще в конце XIX века столярами они были ошибочно названы строгальными. А когда по прошествии ста лет российские ученые стали разбираться с классификацией деревообрабатывающего оборудования, оказалось, что эти станки не строгальные, а продольно-фрезерные.

Дело в том, что строганием называется процесс резания древесины ножом, лезвие которого перемещается параллельно обрабатываемой поверхности. Строгание как технологический процесс предполагает получение за проход ножа одной стружки постоянной толщины, например, сливной завитками стружки при строгании ручным рубанком или строгании шпона на специальных станках, когда нож движется прямолинейно.

А фрезерованием называется процесс резания древесины вращающейся фрезой, резцы которой совершают резание во время движения по круговой траектории, тогда как прямолинейное поступательное движение подачи может совершать либо заготовка, либо весь инструмент. При этом припуск на обработку разбивается резцами (ножами), обращающимися по циклоидам, на большое число стружек, имеющих вследствие кинематики процесса переменное сечение и по форме напоминающих вытянутую запятую.

Главное отличие этих двух видов обработки состоит в том, что, с точки зрения геометрии обработанной поверхности, при строгании она получается плоской, а при фрезеровании - волнистой, образованной у вершин циклоид траекторий фрезерующих ножей чередующимися впадинами и гребнями.

Но термин «строгальный» уже прочно вошел в профессиональную лексику, техническую литературу и даже в учебники по деревообработке. И, разрабатывая первый наш ГОСТ на эти станки, его создатели еще в начале 1970-х, чтобы не совершать революции, были вынуждены в его наименовании взять термин «продольно-фрезерные» в скобки, оставив в качестве основного привычный «строгальные». Конечно, со временем планировалось исправить эту ошибку, но потом это благое намерение как-то забылось...

Тем не менее четырехсторонними называются «станки продольно-фрезерные, предназначенные для плоского и профильного продольного фрезерования заготовок из древесины за один проход со всех четырех сторон по поперечному сечению».

История «четырехсторонников»

Считается, что изобретателем фрезерного станка для обработки металла был англичанин Эли (Илай) Уитни, получивший в 1818 году соответствующий патент. Но уже скоро такие станки стали распространяться и в деревообработке. Первый «строгально-калевочный» станок - предтеча современных четырехсторонних продольно-фрезерных станков - был запатентован в 1827 году.

Распространению таких станков мешало отсутствие индивидуального привода. Привод был групповым, то есть для всех станков общим, единым, и осуществлялся от вала водяного колеса, а позже - от вала паровой машины, проходил через весь цех, а от него отходили отдельные ременные передачи для каждого вращающегося агрегата. Понятно, что подвести сразу несколько приводных ремней ко всем четырем шпинделям, расположенным в четырехстороннем станке и вертикально, и горизонтально, а также к механизму подачи, было весьма непросто (рис. 1).

Победное шествие деревообрабатывающих станков с приводом от собственного электродвигателя началось в 1907 году с созданием английской фирмой Wadkin станка DC Pattern Miller. И через 20 лет, в 1928 году в Германии последние крупные предприятия завершили замену группового трансмиссионного привода станков индивидуальным - от отдельных электромоторов. Началась эра промышленной деревообработки, в развитии технологий которой четырехсторонние станки сыграли одну из главных ролей.

Классификация четырехсторонних станков


Рис. 2. Классическая схема расположения шпинделей четырехстороннего станка:
1 - нижний горизонтальный шпиндель;
2 - правый вертикальный шпиндель;
3 - левый вертикальный шпиндель;
4 - верхний горизонтальный шпиндель

Назначение четырехсторонних продольно-фрезерных станков - фрезерование брусков, досок или бруса для получения заготовок и деталей, имеющих прямоугольное или профильное постоянное по всей длине сечение.

Область применения - деревообрабатывающие и мебельные предприятия, выпускающие погонажные столярно-строительные изделия и полуфабрикаты, а также детали мебели из цельной массивной древесины.

За долгие годы, прошедшие с момента их изобретения, четырехсторонние станки сохранили весь изначально заложенный в них состав узлов, хотя и серьезно изменились за счет совершенствования конструкции.

Любой такой станок и сегодня включает в себя станину с расположенными на ней столами (рабочим и фуговальным); продольные направляющие линейки; механизм подачи (концентрированный или распределенный); прижимы для заготовок (боковые и вертикальные); фрезерные агрегаты (горизонтальные и вертикальные) и систему управления.

По исполнению четырехсторонние станки условно подразделяются на три основные группы. К первой относят легкие, с шириной обработки деталей до 180 мм. Они предназначены преимущественно для производства погонажных столярно-строительных изделий (наличников, плинтусов и т. д.) Скорость подачи таких станков - от 6 до 36 м/мин (кинематическая), число шпинделей - 4-6. Станки второй группы - средние, с шириной обработки до 250 мм. Применяются для производства строительного погонажа, брусьев, досок и т. д. Скорость подачи станков этой группы - 8-60 м/мин, а у станков для калибрования пиломатериалов - 150 м/мин и выше при числе шпинделей не более пяти. Третья группа - тяжелые станки с шириной обработки до 600 мм. Служат для обработки строительных балок, стенового клееного бруса и других подобных деталей с большим поперечным сечением. Существуют и сверхтяжелые четырехсторонние станки с шириной фрезерования до 2600 мм, используемые при обработке широких клееных щитов и балок.

Несколько десятилетий назад к первой группе станков относили также станки с шириной обработки 60-100 мм, однако в последнее время спрос на такое оборудование снизился и его серийное производство почти прекращено.

Существует также деление четырехсторонних станков по технологическому назначению. Обычно у станков имеется, как правило, всего четыре шпинделя для обработки заготовки снизу, с обоих боков и сверху.

Если четырехсторонние станки снабжены устройствами и фрезерными агрегатами для устранения кривизны (покоробленности) исходных заготовок, то по аналогии с ручным фуганком на профессиональном языке они могут называться фуговальными. У них имеются на входе удлиненный рабочий (фуговальный) стол и агрегаты, обеспечивающие создание плоской базовой поверхности на нижней пласти и кромке исходных заготовок.

Станки, оснащенные на выходе дополнительным, пятым, шпинделем, предназначенным для выборки глубокого продольного профиля на заготовках или их продольного раскроя пилами на заготовки, называются калевочными - по аналогии с рубанком-калевочником. Станки, совмещающие функции фугования и отборки профиля и оснащенные соответствующими узлами и агрегатами, называются фуговально-калевочными.

Первый калевочный станок сконструировал в 1920 году в Германии Армин Бернер. Работая в фирме Gubisch, он усовершенствовал конструкцию станка и расширил спектр его функций, в результате чего был создан первый фуговально-калевочный четырехсторонний станок.

Технологические схемы четырехсторонних станков

Любой четырехсторонний станок можно рассматривать как комбинацию механизмов фрезерных станков, сгруппированных на одной станине в порядке последовательности выполнения операций по обработке деталей.

При классической схеме расположения шпинделей (рис. 2) первым по подаче располагается нижний горизонтальный, который, подобно шпинделю фуговального станка, создает на нижней пласти заготовки прямолинейную плоскую базовую поверхность.

Затем в станке устанавливается первый вертикальный шпиндель (обычно справа по подаче), задачей которого является создание плоской прямолинейной базовой поверхности на кромке заготовки, которая будет строго перпендикулярна базовой, сформированной на ее нижней пласти. Работа этого шпинделя подобна работе фрезерного вертикального станка с нижним расположением шпинделя, выполняющего функцию фугования кромки.

В станках классической схемы за первым вертикальным шпинделем следует аналогичный, но выполняющий функцию рейсмусовой обработки для получения заданной ширины заготовки. Этим же шпинделем может одновременно выполняться и формирование профиля на кромке.

Толщина формируется верхним горизонтальным шпинделем за счет съема припуска с верхней пласти заготовки - аналогично обработке на одностороннем рейсмусовом станке. Этим же шпинделем при установке соответствующего инструмента можно формировать и профиль на верхней пласти заготовки.

Таким образом, на четырехстороннем станке последовательно обрабатываются все четыре продольные поверхности детали, что, собственно, и предопределило название оборудования.

Однако в ряде случаев последовательность расположения и количество шпинделей в четырехстороннем станке могут отличаться от принятых в классической схеме.

Основное значение при этом имеет форма сечения обрабатываемого профиля. У него может быть, например, большая глубина припуска, который невозможно снять одной фрезой из-за необходимости большого увеличения диаметра фрезы. Величина (глубина) припуска может ограничиваться мощностью привода одного шпинделя, что не позволит удалить припуск полностью за один проход. У профиля могут также иметься какие-то поднутрения, недоступные для горизонтальной или вертикальных фрез.

Кроме того, при продвижении обрабатываемой заготовки через станок, посредством надежного контакта с элементами механизма подачи должна обеспечиваться строгая равномерность этого перемещения. Но, скажем, при изготовлении деталей треугольного или близкого к нему сечения на заготовке просто не остается поверхностей, пригодных для контакта с вальцами механизма подачи, и окончательное формирование профиля должно производиться несколькими фрезами, установленными на суппортах, которые расположены как можно ближе к выходной стороне станка.

Все это может привести к необходимости использования в станке дополнительных горизонтальных и вертикальных шпинделей, в том числе наклоняемых.

Но наиболее часто в калевочных четырехсторонних станках для формирования относительно несложных профилей используется пятый, дополнительный, шпиндель, суппорт которого позволяет размещать его сверху, снизу, слева или справа от заготовки или наклонять под любым заданным углом.

Патент на такой универсальный калевочный суппорт, переставляемый в различные положения, был получен в 1954 году немецкой фирмой Weinig.

Число шпинделей, по сравнению с классической схемой, увеличивается и в фуговальных четырехсторонних станках. А о принципе работы этого оборудования и способах фугования речь пойдет в следующей публикации.

Андрей МОРОЗОВ,
компания «МедиаТехнологии»
по заказу журнала «ЛесПромИнформ»

Многошпиндельные станки являются очень эффективными для экономии времени при обработке древесины в большом объеме.

Деревянные заготовки, после распила имеют дефекты, такие как неравномерность поверхности, трещины и т.д., которые необходимо устранить прежде, чем приступать к их дальнейшей обработке.
Для устранения этих дефектов используются фрезерные станки, посредством которых каждая из четырех поверхностей заготовки обрабатываются отдельно.
Когда объем обрабатываемой древесины достаточно велик проще, удобнее и экономичнее применять многошпиндельные деревообрабатывающие станки.
Такие машины также называют . Как следует из названия, все четыре плоскости заготовки подвергаются обработке, или строжке, одновременно.

Может иметь от 4 до 10 шпинделей, в зависимости от требований, предъявляемых к конечному виду Вашей продукции. Проще говоря, количество шпинделей зависит от сложности профиля изделия, которое Вы хотите получить на выходе станка.

состоит из следующих основных частей:

- Рабочий и подающий столы;
- Подающие и выталкивающие вальцы;
- Нижний и верхний шпиндели;
- Правый и левый шпиндели;
- Дополнительные шпинделя для создания сложных форм профиля;
- Универсальный шпиндель.

Подающий стол имеет прижимные элементы и возможность регулировки станины по вертикали, что позволяет пропускать через станок заготовки различной толщины.

Так например, для того чтобы придать гладкость сильно деформированной поверхности необходимо удалить большое количество древесины, с другой стороны, прямая древесная заготовка требует снятия очень небольшого слоя материала (достаточно удалить только следы ленточной пилы).

В ситуации, когда нужно выпрямлять древесную заготовку, поступающую в станок, используется прижимной ролик, находящийся перед первым верхним шпинделем. Дополнительный прижимной блок, располагающийся перед первым нижним шпинделем, используется для тонкого материала, который не нуждается в правке. Эта опция может быть отключена посредством панели управления станка.

На первоначальном этапе прохождения материала через очень важно добиться гладкости нижней и правой стороны заготовки, которые являются базовыми для дальнейших операций по приданию нужной формы Вашему изделию.

Другой метод выпрямления древесины - использование рифленого стола, является наиболее подходящим для обработки твердых сортов древесины. В этом случае первый нижний режущий блок формирует канавки на нижней стороне заготовки, по форме повторяющие рисунок рифленого стола, что позволяет уменьшить трение между заготовкой и столешницей и равномерно подавать материал для дальнейшей обработки.

Но этот метод выпрямления древесины требует наличия у четырехстороннего станка еще одного нижнего шпинделя, режущий блок которого будет удалять промежуточные канавки и выравнивать нижнюю поверхность изделия. Рабочий стол может быть оснащен ручной или автоматической системой подачи ваксилита - смазки, растворяющей смолу, для облегчения подачи заготовки. В случае обработки смолистых пород древесины наличие дополнительного нижнего шпинделя также необходимо и для удаления ваксилита с нижней стороны заготовки.

Подающие ролики четырехстороннего строгального станка

Подающие ролики могут быть оснащены пружинными или пневматическими цилиндрами. Ролики должны быть правильно спроектированы, чтобы обеспечивать максимальную тягу и минимальный износ.
Вертикальные шпиндели четырехстороннего строгального станка:
Для вертикальных шпинделей необходима качественная и гибкая система настройки, в противном случае, для изменения вида профиля и, соответственно, диаметра инструмента потребуется достаточно много времени.

Быстрая настройка в части вертикальных шпинделей позволяет добиться оптимального контакта между заготовкой и рабочим столом.
Если вертикальные шпиндели четырехстороннего строгального станка находятся в четко закрепленном положении, диаметр и рабочая высота режущего инструмента, а также скорость подачи и давление подающих роликов регулируются одновременно посредством цифровой панели системы управления. Качественная настройка левого вертикального шпинделя гарантируют высокое качество строжки, и особенно актуальна при работе с твердыми породами древесины.

Топ шпиндель четырехстороннего строгального станка

Топ шпинделем называется первый правый вертикальный шпиндель станка. Режущий инструмент, расположенный на позиции топ может быть использован как для строгания поверхности, так и для профилирования заготовки. Хороший четырехсторонний станок должен давать на верхнем горизонтальном/вертикальном шпинделе до 40 мм профилирования.

Универсальный шпиндель четырехстороннего строгального станка

Строгальный станок может быть оснащен дополнительным универсальным шпинделем с целью достижения большей гибкости профилирования.

Опции четырехстороннего строгального станка

Четырехсторонний строгальный станок может быть оснащен дополнительными опциональными устройствами, такими как: дополнительное устройство подачи после верхнего горизонтального шпинделя, рифленый рабочий стол для обработки древесины твердых пород, удлиненный подающий и рабочий столы, увеличенная мощность двигателей шпинделей и другие.


К атегория:

Деревообрабатывающие станки

Четырехсторонние продольно-фрезерные станки

Четырехсторонние продольно-фрезерные станки предназначены для плоской и профильной обработки за один проход всех четырех поверхностей заготовки или доски. Иногда на этих же станках устанавливают пилы для разделения заготовок по ширине или толщине.

Конструкция

Рабочие органы четырехстороннего продольно-фрезерного станка (рис. 1) состоят из двух горизонтальных шпинделей - верхнего и нижнего - и двух вертикальных шпинделей - правого и левого. В станках некоторых моделей дополнительно установлен пятый нижний горизонтальный шпиндель. Подача материала валь-цово-гусеничная или вальцовая. Станки оборудованы направляющими линейками и прижимами. Все элементы закреплены на литой станине.

В процессе работы в подающий механизм непрерывно вручную или с помощью питающего устройства подают заготовки (доски). Захваченная подающими устройствами заготовка поступает на ножи нижней горизонтальной ножевой головки. Нижняя ножевая головка обрабатывает нижнюю пласть, создавая первую базовую поверхность, затем заготовка поступает к ножевой головке правого вертикального шпинделя, которая, обрабатывая кромку, образует вторую базовую поверхность. Базируясь на эти две поверхности, заготовка надвигается на ножевую головку левого вертикального шпинделя, строгающую вторую кромку, и, наконец, верхняя горизонтальная головка обрабатывает верхнюю пласть.

Шпиндели обычно укрепляют на суппортах, позволяющих изменять их положение при настройке в вертикальной и горизонтальной плоскостях. Это очень важно, так как четырехсторонние продольно-фрезерные станки рассчитаны на обработку заготовок (досок) различных размеров как по ширине, так и по толщине. Вертикальные шпиндели станков можно также наклонять в плоскости, перпендикулярной направлению подачи.

Рис. 1. Схема четырехстороннего продольно-фрезерного станка: 1 - суппорт пятого (калевочного) шпинделя, 2 - суппорт верхнего горизонтального шпинделя, 3 - верхний горизонтальный шпиндель, 4 - правый вертикальный шпиндель, 5 - суппорт нижнего горизонтального шпинделя, 6 - суппорт механизма подачи, 7 - нижний горизонтальный шпиндель, 8 - горизонтальные прижимы, 9 - левый вертикальный шпиндель, 10 - суппорт левого вертикального шпинделя, 11 - калевочный шпиндель, 12 - направляющие линейки, 13 - опорная плита, 14 - вертикальный прижим

Дополнительный нижний пятый шпиндель И часто называют калевочным, он предназначен для выборки профиля в нижней пласти заготовок и для разделения их по ширине или толщине на отдельные бруски. В первом случае на шпинделе крепят профильные фрезы, во втором - дисковые пилы диаметром до 350 мм. В станках С16-4А калевочный суппорт можно переставлять из нижнего положения в верхнее для выборки глубокого профиля на верхней пласти заготовки (доски). Кроме того, в этих станках предусмотрена возможность поворота дополнительного шпинделя на 90°, что позволяет использовать его для деления заготовок по толщине.

Шпиндели вращаются с частотой 5000-6000 об/мин от индивидуальных электродвигателей. Часто на станках бывают установлены электродвигатели с удлиненными валами (рис. 141), которые являются одновременно шпинделями.

Шпиндели, выполненные отдельно от электродвигателей, соединены с ними муфтами или ременными передачами; в этом случае электродвигатели работают от тока промышленной частоты, во всех остальных - от электрического тока повышенной частоты (100 Гц).

Некоторые модели четырехсторонних продольно-фрезерных станков оборудованы гладильными ножами (рис. 3), установленными непосредственно за первым горизонтальным нижним шпинделем. Из трех установленных гладильных ножей два работают, а третий эксцентриком утопляется ниже направляющих и находится в резерве. Гладильные ножи снимают с обработанных нижних пластей заготовок мелкие неровности. Каждый нож установлен в выдвижной коробке под некоторым углом к направлению движения заготовок. Ножи можно передвигать по высоте (каждый в отдельности) эксцентриковыми валиками. Это необходимо для изменения толщины снимаемой стружки.

Гладильные ножи снимают длинную стружку, которую не могут удалять эксгаустерные устройства, поэтому станки дополнительно оборудуют устройством для дробления стружки, работающим от отдельного электродвигателя.

Если стружка забивается под гладильные ножи, то налицевой поверхности заготовки могут образоваться выпуклости, неровности, борозды и углубления. При обнаружении этого дефекта проверяют правильность установки ножа. Поворотом эксцентрика нож утопляют, коробку с ножом удаляют из станка для осмотра и вводят в работу резервный нож.

Стружка забивается под нож, когда между ним и стружколомателем имеется зазор (местный или по всей длине) или если нож выступает из стружколомателя меньше чем на 1-2 мм, а также когда задняя грань ножа находится ниже уровня стружколомателя. Устранив недостатки, коробку с ножом ставят на место.

Рис. 2. Электродвигатель с валом, служащим одновременно вертикальным шпинделем продольно-фрезерного станка: 1 - корпус, 2 - гайка, 3 - фреза, 4 - механизм подъема шпинделя, 5 - направляющие суппорта, 6 - винт для перемещения шпинделя в горизонтальной плоскости

При вальцово-гусеничной подаче цепь и вальцы работают от од-ного привода (часто с вариатором для бесступенчатого изменения скорости). Скорость подачи находится в пределах 4-42 м/мин. Верхние вальцы можно настраивать по высоте.

Вальцовый механизм подачи размещен в головной части станка, однако вальцы могут быть рассредоточены и вдоль станка. Поверхность у них рифленая или гладкая. Если вальцы устанавливают позади верхнего ножевого вала, их иногда покрывают резиной, что дает лучшее сцепление с поверхностью заготовки и в то же время сохраняет класс шероховатости ее обработки.

Рис. 3. Гладильные ножи: 1 - нож, 2-коробка, 3 – винт, 4 - эксцентриковый валик, 5 - устройство для дробления стружки

Направляющие устройства состоят из стальных плит и направляющих линеек. Плиты образуют опорную поверхность для заготовок. Опорную плиту переднего стола перед нижней горизонтальной ножевой головкой устанавливают по высоте, поворачивая маховичок винтового механизма, и достигают этим изменения толщины стружки, снимаемой с заготовки. Эта толщина не должна превышать высоты неровностей на поверхности заготовки.

Четырехсторонние продольно-фрезерные станки оборудованы централизованной системой управления, которая предусматривает блокировку, предотвращающую поломку отдельных элементов станка в случае, если станочник допустит ошибку в управлении станком.

Четырехсторонние продольно-фрезерные станки С10-2, С16-5, С16-4А, С25-01 имеют много общего по конструкции и отличаются в основном размерами и в отдельных случаях - порядком размещения рабочих органов, мощностью электродвигателей приводов.

Станок С10-2 предназначен для обработки одновременно четырех сторон заготовок и досок шириной до 100 мм (что указывается в индексе модели) и толщиной до 50 мм. Все станки моделей С16 предназначены для обработки заготовок и досок шириной до 160 мм и толщиной до 80 мм; станки С25-01 -для заготовок шириной до 260 мм и толщиной до 125 мм.

Станок С16-4А - основной в группе четырехсторонних продольно-фрезерных станков. Он предназначен для плоскостного фрезерования досок, брусков и планок одновременно с четырех сторон.

Станина станка чугунная, коробчатой формы. На суппортах станины закреплены электродвигатели, на их валах устанавливают ножевые головки. На станине закреплены также направляющие линейки и подпружинные ролики для прижима заготовок к столу станка и направляющей линейке.

Суппорт с электродвигателем нижней ножевой горизонтальной головки (первой по ходу подачи) может передвигаться по вертикали и фиксируется эксцентриковым зажимом. Суппорт с электродвигателем правой вертикальной головки (второй по ходу подачи) может перемещаться в поперечном направлении и фиксируется клеммным зажимом. Суппорт левой вертикальной головки (третьей по ходу подачи) перемещается по вертикали маховичком и фиксируется прихватом; в осевом направлении положение суппорта изменяют и фиксируют винтами.

Для установки подающих вальцов, ножевых головок и прижимных элементов на размер строгаемого материала на станке предусмотрены соответствующие шкалы. На станке установлен счетчик погонажа, пульт управления размещен на фронтонной части станины, электроаппаратура станка помещена в электрошкафу. Заготовки подаются в станок вручную ийи с помощью магазина, подхватываются подающими (двумя нижними и двумя верхними) вальцами от привода, включающего электродвигатель, вариатор, редуктор и шестеренчатую передачу. Скорость подачи изменяется бесступенчато.

Положение движущейся в процессе обработки заготовки определяется опорными столами и боковыми направляющими линейками.

Все шпиндели имеют оградительные устройства, которые одновременно служат приемниками для стружки. Перед механизмом подачи установлены ограничитель толщины досок и когтевая защита.

Система управления станком обеспечивает невозможность включения и работы механизма подачи при отключении хотя бы одного из электродвигателей рабочих органов, невозможность включения электродвигателей при неустановленных ограждениях.

Рис. 4. Четырехсторонний продольно-фрезерный станок С25-01: 1 - суппорт верхнего ножевого вала, маховичок настройки верхнего ножевого вала, 3 - маховичок настройки блока прижимных устройств, 4 - блок прижимных устройств, 5 - маховички настройки механизма подачи, 6 - панель управления, 7 - блок с механизмом подачи, 8 - эксгаустерный приемник левого вертикального шпинделя

Мощность электродвигателей станка и высокая скорость подачи позволяют применять при эксплуатации станка скоростные режимы обработки.

Станок С16-4А как станок с проходной обработкой, с бесступенчатой скоростью подачи может быть включен в автоматическую линию.

Четырехсторонний продольно-фрезерный станок С25-01 также является базовой моделью. Вальцовый механизм подачи с бесступенчатым изменением скорости установлен в переднем блоке станины. Конструкция станка позволяет дополнить его автоматическим магазинным питателем, для привода которого на одном из валов механизма подачи станка предусмотрена звездочка. Настройка подающих вальцов на толщину материала производится маховичками. Прижимные элементы, расположенные в зоне вертикальных шпинделей, смонтированы в общем блоке. При настройке прижимных элементов по высоте блок перемещается в вертикальной плоскости маховичком. Верхний горизонтальный ножевой вал установлен на суппорте в левой части станины. Для настройки его по высоте предусмотрен винтовой механизм перемещения суппорта с маховичком. Панель управления станка размещена в передней части станка, где находится рабочее место станочника.

Выбор режима работы

Режим работы выбирают по мощности наиболее загруженного электродвигателя и по классу шероховатости обработанной поверхности. Рассчитывают эти показатели так же, как и для рейсмусовых станков, но для всех электродвигателей рабочих органов. Затем выбирают скорость подачи по мощности наиболее загруженного двигателя при условии получения требуемого класса шероховатости обработанной поверхности.

Настройка станков

Четырехсторонние продольно-фрезерные станки в части настройки - наиболее сложные из всей группы продольно-фрезерных станков. У них настраивают режущие узлы, прижимные элементы и подающие устройства.

Верхняя образующая цилиндрической поверхности резания нижней горизонтальной ножевой головки, расположенной впереди остальных режущих инструментов станка, должна совпадать с рабочей поверхностью заднего (неподвижного) стола или быть выше ее на 0,02-0,05 мм. Положение ножевой головки относительно заднего стола проверяют так же, как и при настройке фуговального станка, т. е. контрольным бруском. Совпадение горизонтальной касательной к поверхности резания и рабочей поверхности заднего стола обеспечивают путем перемещения по высоте суппорта шпинделя ножевой головки, поворачивая эксцентриковый валик, на который опирается суппорт, или перемещая суппорт другими устройствами.

Передний (подвижный) стол станка устанавливают ниже заднего на величину слоя древесины, сострагиваемого с пласти заготовки. Этот размер зависит от припуска на обработку и составляет от 1 до 3 мм.

Если Конструкцией переднего стола предусматривается возможность перемещения по высоте только его губки, расположенной у ножевой головки, то толщину сострагиваемого слоя определяет положение этой губки. Такая конструкция стола позволяет легко изменять толщину снимаемого слоя древесины.

При настройке нижней горизонтальной ножевой головки для профильного фрезерования кроме ее установки по высоте необходимо регулировать ее положение по ширине стола. Для настройки используют эталонную деталь или отрезок ранее обработанной детали. Деталь помещают на задний стол над ножевой головкой и прижимают к правой вертикальной линейке.

Если предусмотрено последующее фрезерование кромок заготовки, то между эталонной деталью и линейкой кладут прокладки толщиной, равной толщине сострагиваемого правой ножевой головкой слоя древесины. Головку устанавливают в горизонтальном и вертикальном направлениях по эталонной детали и закрепляют.

Расположенную после нижней верхнюю горизонтальную ножевую головку устанавливают так, чтобы расстояние от режущих кромок ножей до расположенного под головкой стола равнялось толщине обработанных заготовок.

Если верхняя ножевая головка расположена первой на ходу заготовки, то одновременно настраивают и верхний стол, к рабочей поверхности которого заготовка прижимается верхней пластью при фрезеровании ее нижней пласти нижней горизонтальной ножевой головкой. Стол этот устанавливают над задним столом нижней горизонтальной ножевой головки параллельно поверхности стола на высоту, равную толщине фрезеруемой заготовки. Головку устанавливают так, чтобы горизонтальная плоскость резания совпадала с рабочей поверхностью верхнего стола.

Для профильной обработки пласти горизонтальную верхнюю ножевую головку настраивают так же, как и профильную нижнюю.

Правую вертикальную ножевую головку (или фрезу) устанавливают в горизонтальной плоскости так, чтобы обеспечивалось снятие с правой кромки заготовки слоя древесины заданной толщины. Для этого режущая кромка инструмента, имеющая наименьший радиус вращения (при профильном фрезеровании кромки), должна выступать влево за плоскость правой передней вертикальной линейки на величину, равную толщине снимаемого слоя древесины с наиболее выступающей части профиля. Левую вертикальную головку (фрезу) устанавливают в горизонтальном направлении на заданную ширину детали.

Рабочую поверхность левой направляющей линейки устанавливают в плоскости, касательной к окружности вращения режущей кромки инструмента, имеющей наименьший радиус, параллельно направлению подачи заготовки. В вертикальном направлении режущий инструмент устанавливают так, чтобы резцы его перекрывали толщину детали,

Для профильной обработки кромок фрезы на вертикальных шпинделях настраивают по эталонной детали. Фрезу перемещают по высоте, добиваясь совпадения ее профиля с профилем эталонной детали, прижатой к столу станка. Если после профильной обработки кромок предусмотрено снятие слоя древесины с нижней пласти заготовки, то фрезы настраивают по эталонной детали, уложенной на прокладке. Толщина прокладок должна быть равна толщине снимаемого слоя древесины. Опорная поверхность вальцов или гусеницы должна выступать над поверхностью стола на 0,3-0,5 мм. Нижние подающие органы настраивают путем перемещения их по высоте.

Верхние подающие вальцы устанавливают по высоте на расстоянии от поверхности нижних вальцов или гусеницы, равном толщине обработанной заготовки или несколько меньшем толщины (на 1-1(5 мм). Величину усилия прижима верхних подающих вальцов на заготовку регулируют сжатием пружин. Усилие прижима должно быть достаточным для преодоления сопротивления подаче; в то же время нельзя создавать слишком сильное давление вальцов на заготовку, так как это вызывает дополнительные усилия подачи.

При настройке вертикальных прижимов регулируют положение их по высоте и устанавливают величину усилия прижима.

Все вертикальные прижимные элементы, расположенные перед верхней ножевой головкой, устанавливают на 1,5 мм ниже горизонтальной плоскости продольного фрезерования головки, чтобы ели прижимали заготовку, даже если ее верхняя пласть окажется неиро-фрезерованной, и обеспечивали нормальную работу других режущих инструментов станка. Вертикальные прижимные устройства после верхней ножевой головки устанавливают ниже горизонтальной плоскости резания головки на 0,5 мм.

Горизонтальные левые прижимы устанавливают на уровне плоскости резания левой вертикальной головки (фрезы). Прижимы, служащие для подпора стружки перед режущими инструментами (горизонтальными и вертикальными), устанавливают на уровне плоскости резания инструмента, параллельной направлению подачи.

Прижимы должны предотвращать вибрацию заготовки или отход ее от базовых поверхностей. Величину прижима регулируют, подтягивая пружины.

После окончания настройки станка нужно убрать из зоны режущих инструментов и других механизмов станка посторонние предметы, проверить от руки легкость вращения режущих инструментов, поставить на станок все ограждения. Затем включить станок и провести пробную обработку заготовок. Проверив размеры и качество полученных деталей, при необходимости станок поднастраивают.

Правильно настроенный станок должен обеспечивать точность размеров и формы обработанных деталей с отклонениями от прямолинейности боковых кромок не более 0,2 мм на длине 1000 мм; от параллельности боковых кромок - не более 0,3 мм на длине 1000 мм; от перпендикулярности кромки и пласти - не более 0,15 мм на длине 100мм; от равномерности по толщине-по 2-му классу точнссти обработки.

После предварительной настройки станка на заданный размер обработки обрабатывают две-три пробные заготовки и по результатам измерения их считают настройку законченной или вносят в нее коррективы.

Эталлонная деталь, применяемая для настройки, представляет собой копию детали, изготовленную по точности на один класс выше, чем класс точности детали. Изготовляют эталон из древесины твердых пород или лучше из лигнофоля. Размеры эталона нужно периодически контролировать.

Использовать отрезок ранее обработанной детали допустимо при настройке станков на грубую обработку деталей по 3-му классу точности. Условия обработки пробных деталей, по которым поднастраи-вают станок, и сами детали должны быть ха рактерными для данной партии заготовок.

При настройке необходимо пользоваться точными измерительными инструментами.

Работа на станках

Четырехсторонний продольно-фрезерный станок обслуживают двое или трое рабочих. До начала работы следует убедиться в наличии достаточного количества заготовок и в исправности эксгаустер-ной системы,

Перед пуском станка проверяют исправность и правильность положения всех оградительных устройств, а перед настройкой отключают щит станка, на котором расположено кнопочное управление, чтобы предотвратить возможность ошибочного включения станка.

В четырехсторонний продольно-фрезерный станок нельзя направлять доски с крыловатостью, с глубокими рисками или кривые, а также пересушенные, с большим короблением.

В процессе работы станочник, стоя у питательного стола, следит за тем, чтобы доски по роликам стола шли в один ряд, без значительных перекосов, поправляя неправильно лежащие доски вручную Если станок не оборудован питательным столом, то доски или заготовки из штабеля укладывают на стол впереди станка. Материал следует подавать без межторцовых разрывов. При строгании коротких заготовок межторцовые разрывы приводят к остановке заготовки в станке, что может повлечь за собой образование на обработанной поверхности дефектов обработки (вырывы поперек детали, поджоги). Если при данной скорости подачи межторцовые разрывы неизбежны, следует снизить скорость подачи.

Станочник должен следить за правильным положением упоров, ограничивающих размеры подаваемых заготовок, так как попадание в станок заготовок с чрезмерными припусками может привести к поломке станка или к перегреву электродвигателей.

Размеры заготовок после фрезерования следует контролировать через каждые 20-30 мин, пользуясь калибрами. Если в процессе работы частота вращения одного из рабочих органов падает (обнаруживается по возникновению шума, несвойственного нормальной работе станка), станочник должен немедленно выключить подачу до тех пор, пока рабочие органы не будут вращаться с необходимой частотой вращения. При пробуксовке подающих вальцов, указывающей на ослабление прижимов, следует остановить станок и, осмотрев его, устранить причину, нарушающую нормальную подачу заготовок в станок.

При остановке станка следует проверить состояние электродвигателей и ременных передач. Если обнаружено недопустимое нагревание хотя бы одного электродвигателя, нужно остановить станок и устранить причину нагревания. Через 1,5-2ч работы необходимо фуговать и доводить ножи.

При загрязнении столы или вальцы следует очищать. Причиной появления сколов, вырывов, мшистости и ворсистости на обработанной поверхности может быть большая толщина снимаемого слоя древесины. Рубленая поверхность или большое различие в длине волн может быть из-за слабины в подшипниках.

Конструкция станков. Четырехсторонние продольно-фрезерные станки выпускают для обработки с наибольшим поперечным сечением заготовок по ширине и толщине 100X50 мм (С10-3), 160X80 мм (С16-2А, С16Ф-1А) и 250X125 мм (С26-2М, С25-1А, С25-2А). Для обработки паркетных дощечек имеются станки с наибольшей шириной фрезерования 70 мм (ПАРК7) и 100 мм (ПАРК9).

Для механизации загрузки используют магазинные загрузочные устройства, пристраиваемое к станку, или специальные питательные столы. Для разгрузочных операций станки оснащаются послестаночными конвейерами и автоматическими штабелеукладчиками готовых деталей.

Четырехсторонний продольно-фрезерный станок С26-2М предназначен для обработки досок и брусковых деталей. На станине коробчатой формы размещены последовательно суппорты горизонтального нижнего шпинделя, вертикальных правого и левого шпинделей и верхнего горизонтального шпинделя. Станок может оснащаться дополнительным калевочным суппортом, который предназначен для выборки пазов в детали или раскрое ее на части при выходе из станка.

Рис. 1. Четырехсторонний продольно-фрезерный станок С26-2М: 1 - станина, 2,3,5 - шпиндели, 4 - калевочный суппорт, 6 - стол, 7 - прижимные ролик, 8 - суппорт прижима, 9 - маховички, 10, 14 - вальцы, Ч - когтевая защита, 12 - боковой прижим, 13 - направляющая линейка

Режущие инструменты крепят на шпиндели, которые приводятся во вращение от индивидуальных электродвигателей через ременную передачу. Станок снабжен когтевой защитой, предотвращающей обратный выброс заготовки из станка. Рядом находится планка, которая служит ограничителем подачи заготовок с недопустимо большим припуском.

Механизм подачи станка расположен впереди рабочих шпинделей и состоит из двух нижних неприводных и двух верхних приводных вальцов. Для лучшего сцепления с заготовкой верхние вальцы сделаны рифлеными. Привод вальцов осуществляется от отдельного электродвигателя с регулируемым шкивом через клиновой ремень (вариатор) и систему зубчатых колес. Вариатор позволяет плавно изменять скорость подачи от 7,5 до 42 м/мин. На суппорте смонтированы подпружиненные ролики 7, прижимающие деталь к столу. Сбоку заготовка прижимается пружинным прижимом к направляющей линейке.

Станки для обработки дощечек паркета аналогичны по конструкции. Отличительная особенность станков - наличие конвейерного механизма подачи для обработки коротких заготовок. Он представляет собой двух-цепной приводной конвейер с подпружиненными захватами (шипами). Шипы обеспечивают надежное сцепление и подачу заготовок, различающихся величиной припуска на обработку до 2…3 мм.

Выбор режима работы. Режим работы станка выбирают в зависимости от номинальных размеров детали по ширине и толщине, сложности получаемого профиля и требуемого качества обработки.

По заданным размерам детали и известным припускам на обработку вычисляют толщину и ширину снимаемого слоя каждым режущим инструментом. Эти данные используют для выбора допустимой скорости подачи из условия максимальной загрузки электродвигателей механизмов резания. Выбор производят по графикам, приведенным в руководстве по эксплуатации станка, или расчетом по формулам. Часто наиболее загруженной является верхняя ножевая головка или левая фреза, которая формирует глубокие сложные профили. Если заданы повышенные требования к чистоте получаемой поверхности, то следует предельную скорость заготовки назначать из условия допустимой подачи на один резец.

Настройка станков. Настройка четырехсторонних продольно-фрезерных станков - сложная и трудоемкая операция. Для уменьшения числа перенастроек следует обрабатывать заготовки одного типоразмера партиями. Наименьшую величину партии выбирают так, чтобы окончание ее обработки по возможности совпало с заменой затупившихся режущих инструментов. Кроме того, очередная партия заготовок должна быть с таким видом обработки, чтобы после пропуска первой партии требовалось минимальное время на переналадку станка. Это позволяет повысить производительность труда.

Настройка станка заключается в установке инструментов на заданные размеры обработки, регулировке подвижных столов и направляющих линеек, а также наладке подающих и прижимных элементов. Последовательность выполнения настроечных операций определяется видом обработки, конструкцией станка, методом настройки и настроечными средствами.

Схема настройки станка по шаблону или эталонной детали показана на рис. 86. Шаблон устанавливают в станок, предварительно переместив суппорты, подающие и прижимные элементы на расстояние, несколько превышающее настроечный размер. Шаблон прижимают к рабочей поверхности стола и задней направляющей линейке. Сначала регулируют направляющие линейки так, чтобы их рабочие поверхности были параллельны одна другой. Причем задняя линейка должна располагаться по касательной к окружности резания и выступать относительно передней линейки на толщину снимаемого слоя (2…3 мм). Переднюю линейку выверяют с помощью прокладок, толщина которых равна толщине снимаемого слоя.

Рис. 2. Схема настройки четырехстороннего продольно-фрезерного станка по шаблону: 1- задний стол, 2 - шаблон, 3 - задняя линейка, 4 - передняя линейка, 5 - прокладки

Размерную настройку режущих инструментов выполняют со стороны подачи материала в такой последовательности: нижняя горизонтальная ножевая головка, левая и правая вертикальные ножевые головки, верхняя горизонтальная ножевая головка и калевочная фреза (при необходимости).

Размерная настройка для всех режущих инструментов аналогична и включает следующие операции: расфиксирование суппорта, регулировка положения режущего инструмента относительно шаблона, фиксирование суппорта. Суппорт перемещают съемной рукояткой или маховичком. Режущую кромку ножа подводят до касания с рабочей поверхностью шаблона при провертывании ножевой головки вручную.

При другом способе настройки режущих инструментов используют встроенные измерительные средства: шкалы и лимбы. На рис. 3 показана настройка верхней горизонтальной ножевой головки четырехстороннего продольно-фрезерного станка. Суппорт перемещают маховичком, одновременно отсчитывая величину перемещения по шкале. Установив суппорт в заданное положение, приступают к накладке прижимных элементов. Задние прижимные колодки 9 у верхней ножевой головки регулируют по высоте гайками так, чтобы расстояние от стола до рабочей поверхности колодок было на 2…3 мм меньше настроечного размера Х. Усилие прижима колодок регулируют, изменяя натяг пружины гайками. Передний прижим (стружколома-тель) настраивают по высоте вращением гаек. Регулировку ведут до тех пор, пока расстояние от стола до рабочей кромки стружколомателя не будет равно настроечному размеру. Силу прижима стружколомателя к обрабатываемому материалу регулируют маховичком, сжимая, или ослабляя пружину.

Роликовые прижимные элементы настраивают так. Последовательно открепляют все прижимы по ходу подачи заготовки и регулируют их положение относительно стола и направляющих линеек. При настройке пользуются измерительными шкалами, укрепленными вблизи регулируемого элемента. Усилие прижима роликов регулируют, изменяя натяг пружин. Выбирают усилие прижима в зависимости от породы древесены и размеров обрабатываемого материала. Не следует чрезмерно прижимать к столу заготовку, так как на поверхности готовой детали останутся следы от прижимных роликов.

Нижние подающие вальцы устанавливают относительно стола в зависимости от породы, размера и состояния обрабатываемого материала. Для твердых пород древесины и толстых заготовок величину выступа принимают 0,2…0,3 мм, для мягких пород и тонких пиломатериалов - 0,3…0,5 мм.

Рабочую кромку переднего столика регулируют по высоте вращением эксцентрикового валика рукояткой механизма настройки. Столик должен быть опущен относительно заднего стола на величину снимаемого с нижней пласти слоя, которую устанавливают, пользуясь отсчетным устройством механизма настройки.

Затем регулируют верхние подающие вальцы по высоте, а также устанавливают ограничительную планку и когтевую защиту в зависимости от толщины обрабатываемой заготовки. Верхние вальцы настраивают маховичком через винтовую передачу и тяги.

Рис. 3. Настройка верхней горизонтальной ножевой головки четырехстороннего продольно-фрезерного станка: 1 - маховичок, 2 - маховичок регулирования стружколомателя, 3, 6, 7 - гайки, 4 - суппорт, 5 - пружина, 8 - стружко-ломатель, 9 - прижимная колодка, 10 - шкала

Усилие подачи создают прижимом верхних вальцов к материалу и нижним вальцам через пружины. Натяг пружин регулируют гайками.

Закончив размерную настройку станка, следует внимательно осмотреть подвижные части и установить ограждения. Трубопроводы эксгаустерной сети присоединяют к стружкоприемникам и включают разрежение воздуха в системе отсоса стружек. Нажав кнопку, включают вращение режущих инструментов. После набора полной частоты вращения предыдущим шпинделем включают последующий.

Необходимо убедиться в безотказной работе всех режущих инструментов на холостом ходу, включить подачу и обработать пробные заготовки. Скорость подачи выбирают в зависимости от породы древесины, величины снимаемого припуска и требуемого качества обработки.

После обработки следует замерить пробные детали мерительным инструментом: штангенциркулем, индикаторным толщиномером или калибром. Прямолинейность обработанных поверхностей проверяют контрольной линейкой и щупом. Шероховатость поверхности определяют визуально путем сравнения с эталоном или измеряют прибором ТСП -4.

При правильной наладке четырехсторонних станков допускаются следующие отклонения точности обработанных деталей: равномерность по толщине и ширине детали на всей ее длине - по 12-му квалитету; непрямолинейность боковых кромок - не более 0,2 мм на длине 1000 мм; непараллельность боковых кромок - не более 0,3 мм на длине 1000 мм; неперпендикулярность смежных боковых поверхностей - не более 0,15 мм на длине 100 мм.

В зависимости от результатов проверки пробных деталей проводят поднастройку и подналадку станка.

Работа на станках. Станки, не оснащенные загрузочно-разгрузочными устройствами, обычно обслуживают двое рабочих. После пуска станка станочник укладывает очередную заготовку на стол, базируя ее кромкой по направляющей линейке. После захвата заготовки подающими вальцами станочник готовит следующую.

Для обеспечения непрерывной и равномерной работы станка материал следует подавать без межторцовых разрывов, для этого при подаче коротких заготовок скорость можно уменьшить.

Второй рабочий должен принимать готовые детали, проверять визуально качество их обработки и складывать в штабель.

При механизированной загрузке и разгрузке станка станочник должен следить за правильной работой всех элементов станка и околостаночных механизмов. Степень загрузки электродвигателей резания контролируют по амперметру, встроенному в пульт управления станком.

При перегрузке двигателей, повышении шума и появлении стука или снижении частоты вращения инструментов необходимо отключить станок и установить причину неполадки. Частой причиной остановки станка является неправильное его использование. Нельзя подавать заготовки с недопустимо большими припусками ил^ слишком тонкие, покоробленные и неправильной формы. При заклинивании или остановке заготовки нужно включить обратную подачу и вывести заготовку из станка. При появлении мшистости и ворсистости на обработанных поверхностях следует заменить затупившиеся фрезы.


Четырехсторонний продольно-фрезерный станок по дереву предназначен для плоскостного и профильного одновременного фрезерования досок, брусьев и заготовок различного типа (данный инструмент в народе называют «четырехсторонником», мы не будем отклоняться от традиций). Данный инструмент имеет свои особенности и характеристики, о которых мы и поговорим…

Самые распространенные модели четырехсторонника - С26-2М, С25-2А, С25, С16-2А. На станке типа С16-2А работают со шкафами, плинтусами, столярными изделиями и подобным материалом. На первых трех станках обрабатывают половое покрытие (доски), а также брусья для оконных и дверных рам.

Настройка четырехстороннего станка

Четырехсторонний станок по дереву - это чугунная станина, на которой находятся стол, механизмы резания и подачи, которые приводят в движение электродвигателя.

Перед началом работы необходимо установить остро заточенный нож либо фрезу. После этого, исходя из самой детали, настраивают станок (линейки, прижимы, подающий механизм и т.п.). Прижимной механизм необходимо установить так, чтобы брусок проходил как можно свободнее и при этом не вибрировал. Верхние валики устанавливают так, чтобы брусок мог пройти под ними, когда они опущены вниз.

Убедившись, что станок настроен, необходимо пропустить через него несколько пробных брусков. Благодаря этому, вы точно убедитесь, что станок настроен правильно, а если даже это не так, то вы не испортите нужную заготовку. Заготовки необходимо подавать торец в торец. Короткие заготовки сначала обработайте в кратном размере по длине, после чего можно приступать к торцовке.

Основные проблемы и их устранение:

Неровная поверхность. Дефект возможен при неправильном регулировании ножевых валов и/или вибрации станка;

Выхваты по бокам. Данный дефект говорит о неправильной регулировке прижимов, либо обработка изогнутых заготовок;

Искаженный профиль - неправильная установка ножей/фрез на вертикальных головках;

Несоответствие паза и гребня. Этот дефект образуется вследствие неточной установки либо заточки фрез.

Два основных правила безопасности - не работать на станке без ограждения, не лезть в станок во время его работы (чистить, налаживать и т.д.).

Типы фрез, или, как и чем работать…

До установки ножи и фрезы должны быть идеально наточены и хорошо отбалансированы. Крепят к валу равномерно, затягивают болты поочередно, начиная от центра.

Фрезы бывают четырех типов - насадные и концевые, цельные и составные. Для работы со столярными деталями обычно используют насадные и составные фрезы. Во время регулировки фрез параметры сохраняются, и по окончанию заточки профиль не изменяется. Диаметр фрез - 80-180мм.

Чтобы достичь гладкого фрезерования используйте насадные цилиндрические фрезы диаметром 80-140мм, высота - 40-260мм, с четырьмя вставными ножами.

Для идеальной выработки пазов и гребней применяйте насадные затылованные фрезы. Данным типом фрез выбирают пазы 4-12 в ширину, в доске толщиной 28 и 36мм.

Насадные дисковые и пазовые фрезы с напаянными пластинами идеально подходят для:

Прямоугольных продольных и поперечных пазов;

Клееной древесины.

Фрезы дополняются пластинами из быстрорежущей стали либо твердого сплава.

Для гладкого фрезерования обычно используют фрезы, которые имеют от 4 до 8 резцов. Преимущества фрез над ножами - быстрая и простая установка, повышенный уровень безопасности (в отличие от ножей).

Эксплуатация четырехстороннего продольно-фрезерного станка

Смазка

Смазывать шестерни редуктора станка необходимо каждый квартал (то есть каждых 3 мес.,) маслом АК-Ю;

Шарикоподшипники смазывают солидолом УС-2 с той же периодичностью;

Втулки и подшипники скольжения - каждую смену солидолом УС-3;

Установочные винты смазываются солидолом УС-2 каждый месяц;

Направляющие суппортов смазывать ИМ-45 каждый месяц.

Наладка четырехстороннего станка

При наладке станка на необходимую толщину материала суппорт с верхними вальцами, а также суппорт верней ножевой головки необходимо установить по высоте с помощью маховиков, прижимные ролики - с помощью винтов. Для настройки ширины используют левый вертикальный шпиндель и боковые прижимы.

Наладку на необходимый профиль осуществляют с помощью установки профильных ножей на головках.

Основные правила наладки четырехстороннего станка:

Установите кромку переднего стола и нижние вальцы ниже стола, на толщину, равной снимаемому слою дерева;

Верхние вальцы устанавливают соответственно толщине заготовки (запас на прижим - 5мм);

Ножи передней головки устанавливаются на уровне заднего стола;

Верхние ролики и прижимные регулируют по ширине и толщине заготовки. В роликах запас на прижим - 5 мм, в прижимных - 15-20мм;

Направляющая упорная линейка устанавливается на расстоянии 3-4 мм от вертикальной головки (сохраняем угол 90 по отношению к нижним вальцам);

Проводим окончательную выверку ножевых головок.

Что должен обеспечить станок после наладки:

Прямолинейность боковых кромок (проверяют щупом, допустимая норма 0,2 на метр);

Параллельность противоположных кромок (проверяют штангенциркулем, допустимая норма 0,3);

Перпендикулярность смежных кромок (проверяют щупом, допуск 0,15 на 0,1м);

Равномерность толщины бруска.

Станок четырехсторонний своими руками

Качественный четырехсторонний станок для бруса, который даст владельцу удовольствие от использования и будет приносить минимум хлопот стоит довольно недешево. Значительная часть людей предпочитают сделать самодельный четырехсторонний станок. Не обязательно быть суперпрофессионалом, чтобы сделать четырехсторонний станок своими руками. Итак, давайте рассмотрим подробно - из каких этапов состоит изготовление станка.

Инструкция

  1. Первым делом создаем саму раму для станка. Это та поверхность, на которую будет устанавливаться все необходимое оборудование. Рама должна обязательно иметь U-образное колено, которое будет держать ось Z. Для этого необходима труба 2,5см толщиной. Когда стыки труб находятся на месте, используйте герметик.
  2. Двигатель и направляющие оси Х. Сейчас нам необходимо установить направляющие по оси Х. Они изготавливаются из алюминия, и должны иметь U-образную выемку шириной 1.9 см. Купить их можно в каждом магазине, который торгует металлическими изделиями. Устанавливаем двигатель с держателем и присоединяем его к валу электродвигателя.
  3. Готовим основу (ось Х), нам необходим металл либо пластик, который будет прикреплен к раме. Затем крепим подшипники на куске алюминия.
  4. Готовим платформу Y. Она идентична платформе Х, только повернута на 90 градусов. Далее следует установка двигателя и направляющих на платформе Х, после чего собирается подвижная платформа Y. Не забывайте о стяжной гайке и подшипнике.
  5. Собираем ось Z. На данном этапе сборки оси Z следует повторить процедуру сборки оси X и Y. Берем плоский материал и к нему крепим двигатель с направляющими, после чего устанавливаем подшипник и U-образный профиль. Наша платформа движется вверх-вниз, поэтому под весом двигателя может соскочить. Чтобы это предотвратить на каждый конец направляющей установите по роликовому подшипнику.

Заключительный этап. Прикрепите ваш двигатель к платформе Z и установите платформу в раму. Наша конструкция практически готова. Нам остается подключить электродвигатели и запустить программу.

Предлагаем вашему вниманию «Как собрать четырехсторонний станок» видео.

Станки от известных поставщиков - гарантия качества

«ДИОС» - деревообрабатывающее оборудование и комплектующие

Торгово-промышленная группа «Маркетлис-ДИОС» более 17 лет предоставляет клиентам качественное деревообрабатывающее оборудование от известных мировых производителей. С 2002 года данная компания работает как отдельная структура, и более чем успешно поставляет украинским производителям качественное и необходимое оборудование: деревообрабатывающие станки, деревообрабатывающее оборудование и инструмент и т.д.

Компания ежегодно принимает участие в мировых тематических выставках. Знание последних новинок и достижений в своей области, а также многолетний опыт позволяют компании конкурировать с известными европейскими поставщиками.

ООО "Торговый Дом Негоциант-инжиниринг"

ООО "Торговый Дом Негоциант-инжиниринг" начала свое существование на деревообрабатывающем рынке в 1997 году. Сегодня данная компания является одним из лидеров по поставке европейского деревообрабатывающего оборудования на рынок России.

Среди заказчиков ООО «Торговый Дом»- известные белорусские и российские компании и мебельные фабрики, с которыми сложились доверительные отношения. "Торговый Дом Негоциант-инжиниринг" является дилером более ста европейских и российских производителей оборудования.

Компания не только поставляет оборудование, но и осуществляет консультацию, предлагает окончательные технические решения, а также предлагает услуги по монтажу, наладке и обслуживанию оборудования.

Группа компаний Global Edge

Выражение «Global Edge» появилось в 1991 году. Это, пожалуй, самая известная группа компаний на российском рынке. Global Edge являются первопроходцами, которые в 90-х годах первыми завезли высококачественное деревообрабатывающее оборудование в Россию.

Ленточнопильные установки, американские четырехсторонние станки, европейское оборудование для массового изготовления мебели и другое оборудование - все это заслуга Global Edge.

Компания имеет множество серьезных наград, среди которых: всероссийское состязание «Российский лес», «Лидер деревообработки», «Лучшие российские предприятия», «Лучший поставщик 2005», «Европейский стандарт», во всех этих состязаниях компания заняла первое место.

Цена на четырехсторонний фрезерный станок

Как сделать станок своими руками мы уже рассмотрели. Однако если у вас есть возможность купить готовый станок - лучше выбрать этот вариант. На станок четырехсторонний цена довольно разнообразная, и находится в ценовом диапазоне - 400 000-1 000000 рублей. Цена на ножи для четырехстороннего станка начинается от 220 рублей. Можно приобрести б/у, либо станок китайского производства - но эффект уже совсем не тот. Два самых оптимальных варианта - купить, либо сделать своими руками.