Диагностика технического состояния станочного оборудования. Современные средства и методики диагностики оборудования горнодобывающей и горноперерабатывающей отрасли согласно концепции «Надежное оборудование»

– важный процесс, который должен регулярно проводиться на промышленных предприятиях.

Качественное и своевременное осуществление операций, выполненное согласно нормативным документам, способно предотвратить потенциальные поломки и неполадки специализированного оснащения.

Диагностика технологического оборудования выполняет множество функций и задач.

Одной из приоритетных для данного процесса является обеспечение безопасной и качественной работы станков, аппаратов и машин на отечественных предприятиях. Диагностика также обеспечивает надежность объекта.

Качественно проведенное обследование гарантирует сокращение расхода материальных ресурсов предприятия на обслуживание, а также во время проведения планово-предупредительных ремонтов (ППР).

Выполнение диагностики станков, инструмента, машин дает возможность оценить реальное состояние оснащения на данный момент.

Диагностика также выявляет точное место локации потенциальной или уже существующей неполадки. Оценивая показатели работоспособности оборудования, можно установить мощность и эффективность его трудовой эксплуатации.

С помощью общей оценки технического состояния техники составляется прогноз на его дальнейшее использование и определяется точное время его максимальной эксплуатации на производстве.

К диагностическим параметрам относятся два вида: прямые и косвенные. При этом первые характеризуют непосредственно нынешнее состояние объекта, а вторые говорят о функциональной зависимости прямых параметров.

Методы диагностики технологического оборудования

Диагностика технологического оборудования происходит посредством различных методов, в частности:

  • органолептических;

  • вибрационных;

  • акустических;

  • тепловых;

  • магнитно-порошковых;

  • вихревых;

  • ультразвуковых;

Все эти методы широко распространены при оценке состояния объектов на промышленных предприятиях.

При этом важно помнить, что диагностика технологического оборудования имеет свои недостатки. Одним из них является пропуск неполадки при исследовании. Это в дальнейшем может стать причиной поломки оборудования или привести к получению производственных травм рабочих.

Еще одним большим недостатком технологической диагностики является возникновение большой вероятности, что тревога была ложной и потенциальные угрозы для работы оборудования отсутствуют.

Осмотр агрегатов требует, прежде всего, времени. При этом все оборудование остается не рабочим, что приводит к простаиванию.

Оснащенность материально-технической базы имеет важное значение для каждого предприятия. Особенно тщательно нужно следить за исправностью оборудования, своевременной заменой расходников. Это способствует эффективному функционированию предприятия.

Планово-предупредительные работы на всех организациях осуществляются путем регулярных проверок согласно всем требованиям нормативных документов.

Современные методы диагностирования технологическое оборудование на выставке

Представит лучшие образцы металлообрабатывающей техники, а также инновационные технологии в сфере обработки металлоизделий. В том числе будут обсуждаться современные методы диагностирования технологического оборудования.

Традиционно выставка состоится в международном комплексе «Экспоцентр».

Ведущие отечественные и заграничные специалисты представят последние разработки, расскажут о проблемах и перспективах развития отрасли.

Значительные расходы на содержание техники, прежде всего, обусловлены низким качеством ее обслуживания и преждевременным ремонтом. Для снижения затрат труда и средств на техническое обслуживание и ремонт необходимо повысить производи­тельность и улучшить качество выполнения этих работ за счет повышения надежности и эксплуатационной технологичности (ремонтопригодности) выпускаемых единиц, развития и лучшего использования производственно-технической базы предприятий, механизации и автоматизации технологических процессов, внедрения средств диагностирования и элементов научной организации труда.

Под надежностью понимают свойство составных частей машины выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонтов, хранения и транспортирования.

Надежность в процессе эксплуатации зависит от ряда факторов: характера и объема выполняемых машиной работ; природно-климатических условий; принятой системы технического обслуживания и ремонта техники; качества и наличия нормативно-технической документации и средств технического обслуживания, хранения и транспортирования машин; квалификации обслуживающего персонала.

Надежность является комплексным свойством, включающим в себя в зависимости от назначения объекта или условий его эксплуатации ряд простых свойств:

1. Безотказность - свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

2. Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

3. Ремонтопригодность - свойство объекта, заключающееся в его приспособленности к предупреждению и обнаружению причин возникновения отказов, поддержанию и восстановлению работоспособности путем проведения ремонтов и технического обслуживания.

4. Сохраняемость - свойство объекта непрерывно сохранять требуемые эксплуатационные показатели в течение (и после) срока хранения и транспортирования.

В зависимости от объекта надежность может определяться всеми перечисленными свойствами или некоторыми из них. Например, надежность колеса зубчатой передачи, подшипников определяется их долговечностью, а станка - долговечностью, безотказностью и ремонтопригодностью

Автомобиль - это сложная система, состоящая из тысяч деталей с различными производственными и эксплуатационными допусками. Работа осуществляется в разных условиях, поэтому срок службы однотипных объектов различен – в зависимости от условий эксплуатации, режимов работы и качества элементов. Следовательно, каждую единицу необходимо направлять на ремонт в соответствии с ее фактическим состоянием.

При индивидуальном обследовании (контроль, диагностирование, прогнозирование) устанавливается Истинное техническое состояние каждого агрегата. Здесь может быть учтено влияние всего многообразия условий работы, квалификации оператора и других факторов, от которых зависит техническое состояние объекта.

Отсутствие специального контрольно-диагностического оборудования затрудняет обнаружение многих неисправностей. Старыми (преимущественно субъективными) методами можно выявить только значительные и очевидные отказы и отклонения. Стоимость проверки основных систем такими методами примерно на 70-75% выше, чем при использовании современных диагностических методов.

Метод технического диагностирования - совокупность технологических и организационных правил выполнения операций технического диагностирования.

Диагностика (от греческого diagnostikós – способный распознавать) – отрасль знаний, исследующая техническое состояние объектов диагностирования (машин, механизмов, оборудования, конструкций и других технических объектов) и проявление технических состояний, разрабатывающая методы их определения, при помощи которых дается заключение (ста­вится диагноз), а также принципы построения и организацию использования систем диагностирования. Когда объектами диагностирования являются объекты технической природы, говорят о технической диагностике.

Диагностирование – это совокупность методов и средств для определения основных показателей технического состояния отдельных механизмов и машины в целом без их разборки либо при частичной разборке.

Результатом диагностирования является диагноз - заключение о техническом состоянии объекта с указанием при необходимости места, вида и причины дефекта.

Достоверность диагностирования – вероятность того, что при диагностировании определяется то техническое состояние, в котором действительно находится объект диагностирования.

Техническое состояние - совокупность подверженных изменению в процессе производства или эксплуатации свойств объекта, характеризуемая в определенный момент времени признаками и параметрами состояния, установленными технической документацией на этот объект.

Параметр состояния - физическая величина, характеризующая работоспособность или исправность объекта диагностирования и изменяющаяся в процессе работы.

Диагностическая операция - часть процесса диагностирования, выполнение которой позволяет определить один или несколько диагностических параметров объекта.

Технология диагностирования - совокупность методов, параметров и операций диагностирования, выполняемых планомерно и последовательно в соответствии с технологической документацией для получения конечного диагноза.

На рис. 1показана структура технической диагностики. Она характеризуется двумя взаимопроникающими и взаимосвязанными направлениями: теорией распознавания и теорией контролеспособности. Теория распознавания содержит разделы, связанные с построением алгоритмов распознавания, решающих правил и диагностических моделей. Теория контролеспособности включает разработку средств и методов получения диагностической информации, автоматизированный контроль и поиск неисправностей. Техническую диаг­ностику следует рассматривать как раздел общей теории надежности.

Диагностирование включает три основных этапа:

· получение информации о техническом состоянии объекта диагностирования;

· обработку и анализ полученной информации;

· постановку диагноза и принятие решения.

Первый этап заключается в определении параметров состояния объекта, установлении качественных признаков состояния и получении данных о наработке; второй - в обработке и сравнении полученных значений параметров состояния с номинальными, допускаемыми и предельными значениями, а также использовании полученных данных для прогнозирования остаточного ресурса; третий - в анализе результатов прогнозирования и установлении объема и сроков работ по техническому обслуживанию и ремонту составных частей машины.

Объект диагностирования - изделие и его составные части, подвергаемые диагностированию.

В технической диагностике рассматриваются следующие объекты.

Элемент - простейшая при данном рассмотрении составная часть изделия, в задачах надежности может состоять из многих деталей.

Изделие - единица продукции определенного целевого назначения, рассматриваемая в периоды проектирования, производства, испытаний и эксплуатации.

Система - совокупность совместно действующих элементов, предназначенная для самостоятельного выполнения заданных функций.

Понятия элемента, изделия и системы трансформируются в зависимости от поставленной задачи. Например, при установлении его собственной надежности станок рассматривается как система, состоящая из отдельных элементов - механизмов, деталей и т.п., а при изучении надежности технологической линии - как элемент.

Структура объекта - условная схема его строения, образуемая последовательным расчленением объекта на элементы структуры (составные части, сборочные единицы и т.п.).

При диагностировании различают рабочие воздействия, поступающие на объект при его функционировании, и тестовые воздействия, которые подаются на объект только для целей диагностирования. Диагностирование, при котором на объект подаются только рабочие воздействия, называется функциональным, а диагностирование, при котором на объект подаются тестовые воздействия,- тестовым техническим диагностированием.

Совокупность средств, исполнителей и объектов диагностирования, подготовленная к проверке параметров состояния или осуществляющая ее по правилам, установленным соответствующей документацией, называется системой технического диагностирования.

Диагностирование позволяет: снизить простои машин по техническим неисправностям за счет предупреждения отказов своевременной регулировкой, заменой или ремонтом отдельных механизмов и агрегатов; ликвидировать ненужные разборки отдельных механизмов и агрегатов и снизить скорость изнашивания деталей; правильно установить вид и объем ремонта и снизить трудоемкость текущего ремонта за счет сокращения разборочно-сборочных и ремонтных работ; полнее использовать ресурсы отдельных агрегатов и машины в целом, а следовательно, сократить общее количество ремонтов и расход запасных частей.

Опыт внедрения диагностирования показывает, что межремонтный ресурс увеличивается в 1,5...2 раза, число отказов и неисправностей уменьшается в 2...2,5 раза, а затраты на ремонт и техническое обслуживание сокращаются на 25...30%.

Кроме того система технических обслуживаний по фиксированному ресурсу (среднестатистическая система) не обеспечивает высокой надежности и минимальных затрат. Эта система постепенно отмирает, все шире внедряется новый и более экономичный метод обслуживания и ремонта по фактическому техническому состоянию (диагностическая система). Что позволяет полнее использовать межремонтный ресурс машин, устранить необоснованную разборку механизмов, сократить простои вследствие технических неисправностей, снизить трудоемкость технического обслуживания и ремонта. Эксплуатация по техническому состоянию может принести выгоду, эквивалентную стоимости 30% общего парка машин.

В некоторых случаях целесообразно использование комбинированного (смешанного) диагностирования - представляющего совокупность регламентированного технического диагностирования и диагностирования по техническому состоянию.

Для диагностической и комбинированной систем требуются новые методы ис­следования, иной математический аппарат. В основу должна быть положена теория надежности. Необходимо глубже изучать и учитывать изменения физических законо­мерностей отказов, износов и старения деталей в механических системах. Важная роль в совершенствовании управления надежностью подвижного состава принадлежит разработке и внедрению методов прогнозирования технического состояния агрегатов автомобилей.

Цели и задачи технической диагностики. Связь диагностики и надежности

Целью технической диагностики является повышение надежности и ресурса технических систем. Мероприятия по сохранению надежности машин направлены на снижение скорости изменения параметров состояния (главным образом скорости изнаши­вания) их составных частей и предотвращение отказов. Как известно, наиболее важным показателем надежности является отсутствие отказов во время функционирования (работы) технической системы.

Техническая диагностика благодаря раннему обнаружению дефектов и неисправностей позволяет устранить отказы в процессе технического обслуживания, что повышает надежность и эффективность эксплуатации.

Приложение 8

Техническая диагностика оборудования

Общие положения

Цели, задачи и основные принципы технического диагностирования (ТД) оборудования рассмотрены в разделе 3.3. В данном Приложении кратко рассмотрена методика и приведен один из общих способов организации ТД на предприятии.


Требования к оборудованию, переводимому на техническое диагностирование

В соответствии с ГОСТ 26656-85 и ГОСТ 2.103-68 при переводе оборудования на стратегию ремонта по техническому состоянию в первую очередь решается вопрос о его приспособленности для установки на нем средств ТД.

О приспособленности находящегося в эксплуатации оборудования к ТД судят по соблюдению показателей надежности и наличию мест для установки диагностической аппаратуры (датчиков, приборов, монтажных схем).

Далее определяют перечень оборудования, подлежащего ТД, по степени его влияния на мощностные (производственные) показатели производства по выпуску продукции, а также на основе результатов выявления «узких мест» по надежности в технологических процессах. К этому оборудованию, как правило, предъявляются повышенные требования надежности.

В соответствии с ГОСТ 27518-87 конструкция оборудования должна быть приспособлена для ТД. Согласно ГОСТ 26656-85 под приспособленностью к ТД понимается свойство оборудования, характеризующее его готовность к проведению контроля заданными методами и средствами ТД.

Для обеспечения приспособленности оборудования к ТД его конструкция должна предусматривать:

возможность доступа к контрольным точкам путем вскрытия технологических крышек и люков;

наличие установочных баз (площадок) для установки виброметров;

возможность подключения и размещения в закрытых жидкостных системах средств ТД (манометров, расходометров, гидротесторов в жидкостных системах) и подключение их к контрольным точкам;

возможность многократного присоединения и отсоединения средств ТД без повреждения устройств сопряжения и самого оборудования в результате нарушения герметичности, загрязнения, попадания посторонних предметов во внутренние полости и т. д.

Перечень работ по обеспечению приспособленности оборудования к ТД приводится в техническом задании на модернизацию переводимого на ТД оборудования.

После определения перечня оборудования, переводимого на ремонт по техническому состоянию, подготавливается исполнительная техническая документация по разработке и внедрению средств ТД и необходимой модернизации оборудования. Перечень и очередность разработки исполнительной документации приведены в табл. 1.

Таблица 1

Перечень исполнительной документации на диагностирование

Выбор диагностических параметров и методов технического диагностирования

Определяются параметры, подлежащие постоянному или периодическому контролю для проверки алгоритма функционирования и обеспечения оптимальных режимов работы (технического состояния) оборудования.

По всем агрегатам и узлам оборудования составляется перечень возможных отказов. Предварительно проводится сбор данных об отказах оборудования, оснащаемого средствами ТД, или его аналогов. Анализируется механизм возникновения и развития каждого отказа и намечаются диагностические параметры, контроль которых, плановое техническое обслуживание и текущий ремонт могут предотвратить отказ. Анализ отказов рекомендуется проводить по форме, представленной в табл. 2.

Таблица 2

Форма для анализа отказов и выбора диагностических параметров, методов и средств технического диагностирования



По всем отказам намечаются диагностические параметры, контроль которых поможет оперативно отыскать причину отказа, и метод ТД (табл. 3).

Таблица 3

Методы технического диагностирования




Определяется номенклатура деталей, износ которых приводит к отказу.

Определяются параметры, контроль которых необходим для прогнозирования ресурса или срока службы деталей и соединений.

На практике получили распространение диагностические признаки (параметры), которые можно разделить на три группы:

параметры рабочих процессов (динамика изменения давления, усилия, энергии), непосредственно характеризующие техническое состояние оборудования;

параметры сопутствующих процессов или явлений (тепловое поле, шумы, вибрации и др.), косвенно характеризующие техническое состояние;

параметры структурные (зазоры в сопряжениях, износ деталей и др.), непосредственно характеризующие состояние конструктивных элементов оборудования.

Составляется сводный перечень диагностируемых отказов, возможные причины отказов, предшествующие отказу неисправности и т. д.

Исследуется возможность сокращения числа контролируемых параметров за счет применения обобщенных (комплексных) параметров:

устанавливают диагностические параметры, характеризующие общее техническое состояние деталей оборудования, технологического комплекса, линии, объекта в целом, их отдельных частей (агрегатов, узлов и деталей);

устанавливаются частные диагностические параметры, характеризующие техническое состояние отдельного сопряжения в узлах и агрегатах.

Для удобства и наглядности методов и средств ТД разрабатываются функциональные схемы контроля параметров технологических процессов и технического состояния оборудования.

экономическую эффективность процесса ТД;

достоверность ТД;

наличие выпускаемых датчиков и приборов; универсальность методов и средств ТД.

Проводятся исследования выбранных диагностических признаков для определения диапазонов их изменения, предельно допустимых значений, моделирования отказов и неисправностей.

Выбираются средства ТД. При необходимости составляется заявка на создание (приобретение) средств ТД, датчики, приборы, монтажные схемы и т. д.

Разрабатывается технология ТД, технические требования к диагностическому оборудованию.

По результатам анализа отказов оборудования разрабатываются мероприятия по повышению надежности оборудования, в том числе разработка средств ТД.


Средства технической диагностики

По исполнению средства ТД подразделяют на: внешние – не являющиеся составной частью объекта диагностирования;

встроенные – с системой измерительных преобразователей (датчиков) входных сигналов, выполненных в общей конструкции с оборудованием диагностирования как его составная часть.

Внешние средства ТД подразделяют на стационарные, передвижные и переносные.

Если принято решение о диагностировании оборудования внешними средствами, то в нем должны быть предусмотрены контрольные точки, а в руководстве по эксплуатации средств ТД необходимо указать их расположение и описать технологию контроля.

В оборудование встраиваются средства ТД, информация от которых должна поступать непрерывно или периодически. Эти средства контролируют параметры, выход значений которых за нормативные (предельные) значения влечет за собой аварийную ситуацию и зачастую не может быть предсказан заранее в периоды технического обслуживания.

По степени автоматизации процесса управления средства ТД подразделяют на автоматические, с ручным управлением (неавтоматические) и с автоматизированно-ручным управлением.

Как правило, автоматические средства ТД содержат источники воздействий (в системах тестового диагноза), измерительные преобразователи, аппаратуру расшифровки и хранения информации, блок расшифровки результатов и выдачи управляющих воздействий.

Средства ТД с автоматизированно-ручным управлением характеризуется тем, что часть операций ТД выполняется автоматически, осуществляется световая или звуковая сигнализация или принудительное отключение привода при достижении предельных значений параметров, а часть параметров контролируется визуально по показаниям приборов.

Возможности автоматизации диагностирования значительно расширяются при использовании современной компьютерной техники.

В технические задания на разработку средств ТД, встраиваемых в гибкие производственные системы, рекомендуется включать требования обеспечения автоматического диагностирования оборудования с глубиной поиска дефекта (отказа) до основного узла.

При создании средств ТД для технологического оборудования могут применяться различные преобразователи (датчики) неэлектрических величин в электрические сигналы, аналого-цифровые преобразователи аналоговых сигналов в эквивалентные значения цифрового кода, сенсорные подсистемы технического зрения.

К конструкциям и типам преобразователей (датчиков), применяемых для средств ТД, рекомендуется предъявлять следующие требования:

малогабаритность и простота конструкции, приспособленность для размещения в местах с ограниченным объемом размещения аппаратуры;

возможность многократной установки и снятия датчиков при минимальной трудоемкости и без монтажа оборудования;

соответствие метрологических характеристик датчиков информационным характеристикам диагностических параметров;

высокая надежность и помехоустойчивость, включая возможность эксплуатации в условиях электромагнитных помех, колебаний напряжений и частоты питания;

устойчивость к механическим воздействиям (удары, вибрации) и к изменению параметров окружающей среды (температура, влажность);

простота регулирования и обслуживания.

Заключительным этапом создания и внедрения средств ТД является разработка документации.

эксплуатационная конструкторская документация;

технологическая документация;

документация на организацию диагностирования.

Эксплуатационная конструкторская документация – это руководство по эксплуатации на объект диагностирования по ГОСТ 26583-85, которое должно включать руководство по эксплуатации средства ТД, в том числе конструкцию и описание устройств сопряжения с объектом.

В руководстве по эксплуатации задают режимы работы оборудования, при которых производится диагностирование.

Технологическая документация на ТД включает:

технологию выполнения работ;

очередность выполнения работ;

технические требования на выполнение операций ТД. Основным рабочим документом является технология ТД данной модели (типа) оборудования, которая должна содержать: перечень средств ТД;

перечень и описание контрольно-диагностических операций;

номинальные допустимые и предельные значения диагностического признака;

характеристики режима работы при проведении ТД.

Кроме эксплуатационной, технологической и организационной документации на каждый переводимый объект разрабатываются программы прогнозирования остаточного и прогнозируемого ресурса.


Прогнозирование остаточного ресурса с помощью математических моделей

Аппаратный поиск неисправностей, рассмотренный выше, необходим не только для устранения отказов, но и для прогнозирования остаточного и прогнозируемого ресурсов. Прогнозирование – это предсказание технического состояния, в котором объект окажется в некоторый будущий период времени. Это одна из важнейших задач, которую приходится решать при переходе на ремонт по техническому состоянию.

Сложность прогнозирования заключается в том, что приходится привлекать математический аппарат, который не всегда дает достаточно точный (однозначный) ответ. Тем не менее, без него обойтись в этом случае нельзя.

Решение задач прогнозирования весьма важно, в частности, для организации планово-предупредительного ремонта объектов по техническому состоянию (вместо обслуживания по срокам или по ресурсу). Непосредственное перенесение методов решения задач диагностирования на задачи прогнозирования невозможно из-за различия моделей, с которыми приходится работать: при диагностировании моделью обычно является описание объекта, в то время как при прогнозировании необходима модель процесса эволюции технических характеристик объекта во времени. В результате диагностирования каждый раз определяется не более чем одна «точка» указанного процесса эволюции для текущего момента (интервала) времени. Тем не менее, хорошо организованное диагностическое обеспечение объекта с хранением всех предшествующих результатов диагностирования может дать полезную и объективную информацию, представляющую собой предысторию (динамику) развития процесса изменения технических характеристик объекта в прошлом, что может быть использовано для систематической коррекции прогноза и повышения его достоверности.

Математические методы и модели для прогнозирования остаточного ресурса оборудования описаны в специальной литературе.


Прогнозирование остаточного ресурса методом экспертных оценок

При расчете остаточного ресурса чаще всего возникают трудности, связанные с отсутствием объективной информации, необходимой для принятия решений по методу, рассмотренному в предыдущем разделе. В большинстве случаев такие решения принимаются на основе учета мнений квалифицированных специалистов (экспертов) путем проведения экспертного опроса. При этом экспертные заключения дает рабочая группа, общее мнение которой формируется в результате дискуссии.

Существует несколько способов экспертной оценки, а именно: непосредственной оценки, ранжирования (ранговой корреляции), попарного сопоставления, баллов (балльных оценок) и последовательных сопоставлений. Все эти способы отличаются один от другого как подходами к постановке вопросов, на которые отвечают эксперты, так и проведением экспериментов и обработки результатов опроса. Вместе с тем их объединяет общее – знания и опыт специалистов в данной области.

Наиболее простым и объективным способом экспертной оценки являет способ непосредственной оценки, который широко применяется для определения остаточного ресурса на основе диагностирования технического состояния оборудования. Достоинством этого способа является высокая точность результатов расчета, а также возможность одновременного прогнозирования ресурса сразу по нескольким типам (образцам) оборудования.

Для экспертной оценки ресурса оборудования на предприятии создается постоянно действующая рабочая группа, которая разрабатывает необходимую документацию, организует процедуру опроса экспертов, обрабатывает и анализирует полученную информацию.

Руководителем рабочей группы должно быть ответственное лицо, осуществляющее, по мере необходимости, определение остаточного ресурса оборудования и дающее заключение о продолжительности работы без остановки на капитальный ремонт на определенное время (до очередного текущего ремонта). Он согласовывает с главным механиком (энергетиком) предприятия состав рабочей группы, составляет программу, принимает участие в опросе экспертов, анализирует предварительные результаты. При наличии на предприятии лаборатории ТД (как основного звена при переводе на стратегию ремонта по техническому состоянию) руководителем рабочей группы назначается заведующий этой лаборатории.

В состав рабочей группы помимо непосредственных исполнителей целесообразно включать технических работников ОГМ и ОГЭ, старших механиков, механиков (мастеров) цехов, стаж которых по эксплуатации и ремонту данного оборудования составляет не менее пяти лет. В состав рабочей группы не следует включать начальников цехов, отделов, служб и т. д., авторитетные суждения которых могут повлиять на объективность экспертных оценок, а также на окончательное решение рабочей группы.

В обязанности рабочей группы входит:

подбор специалистов-экспертов;

выбор наиболее приемлемого метода экспертных оценок и в соответствии с этим разработка процедуры опроса и составления опросных листов;

проведение опроса;

обработка материалов опроса;

анализ полученной информации;

синтез объективной и субъективной информации с целью получения оценок, необходимых для принятия решений.

Руководитель рабочей группы перед организацией экспертного опроса должен представить экспертам максимально возможное количество объективных данных по диагностированию всех агрегатов, узлов, соединений и деталей по каждой единице оборудования, имеющихся в распоряжении рабочей группы, паспорта, ремонтные журналы и другую техническую документацию за весь срок службы оборудования. Путем проведения инструктажа необходимо информировать экспертов об источниках возникновения данного вопроса, путях решения сходных вопросов в прошлом на других предприятиях и оборудовании, т. е. повысить квалификацию (информативность) экспертов в данном вопросе.

При отработке экспертных опросных листов следует особое внимание обратить на правильность задаваемых вопросов. Вопросы должны быть краткими (да, нет), не должны допускать двойного толкования.

При формировании экспертной группы следует учитывать, что основной параметр экспертной группы – согласованность мнений экспертов – зависит от ряда факторов: информативности экспертов, взаимоотношений между ними, организационных аспектов опросных процедур, их сложности и т. д. Число экспертов, входящих в группу, зависит от их информативности и должно составлять от 7 до 12 экспертов, в отдельных случаях 15–20 человек.

Для организационного оформления рабочей экспертной группы издается приказ по предприятию, в котором указываются задачи группы, руководитель и члены группы, сроки заполнения экспертных листов, срок окончания работы.

Для проведения экспертного опроса подготавливаются специальные опросные листы.

При организации экспертного опроса рабочая группа должна учитывать, что эксперту, как любому человеку, трудно без значительной ошибки выносить решения в случаях, когда имеется более семи альтернатив, например, назначать вес (значительность) более чем семи свойствам (показателям). Поэтому нельзя представлять экспертам список из нескольких десятков свойств (показателей) и требовать от них назначить веса этим свойствам (показателям).

В тех случаях, когда требуется оценить большое количество свойств (факторов, показателей, параметров), их необходимо предварительно разделить на однородные группы (по функциональному назначению, принадлежности и др.) так, чтобы число показателей, входящих в однородную группу, не превышало 5–7.

После ознакомления экспертов с состоянием исследуемого вопроса руководитель рабочей группы раздает им опросные листы и пояснительные записки. При этом наиболее авторитетный сотрудник рабочей группы разъясняет экспертам те положения опросного листа, которые недостаточно хорошо ими поняты.

Получив заполненный опросный лист, руководитель рабочей группы при необходимости задает эксперту вопросы для уточнения полученных результатов. Это позволяет выяснить, правильно ли поняты экспертом вопросы опросного листа и действительно ли ответы соответствуют его истинному мнению.

В процессе опроса сотрудники рабочей группы не должны высказывать эксперту свои суждения о его ответах, чтобы не навязывать ему своего мнения.

После обработки результатов опроса проводится ознакомление каждого эксперта со значениями оценок, назначенными всеми другими экспертами, входящими в экспертную группу.

Каждый эксперт, ознакомившись с анонимными мнениями других экспертов, вновь заполняет опросный лист.

Допускается проведение и открытого обсуждения результатов опроса. Каждый эксперт при этом имеет возможность кратко аргументировать свои суждения и критиковать другие мнения. Для исключения возможного влияния служебного положения на мнение экспертов желательно, чтобы эксперты высказывались в последовательности от младшего к старшему (по служебному положению).

В подавляющем большинстве случаев двух туров опроса бывает вполне достаточно для принятия обоснованного решения. В случаях, когда требуется повысить точность оценок путем увеличения объема статистической выборки (количеством ответов), а также при низкой согласованности мнений экспертов, экспертный опрос может быть проведен в три тура.

Результатом опроса является определение искомого параметра прогнозирования на основе анализа ответов экспертов.

Полученный по экспертным оценкам показатель следует рассматривать как случайную величину, отражением которой является индивидуальное мнение эксперта.

Когда значение какого-либо показателя неизвестно, относительно него у специалиста-эксперта всегда имеется интуитивная информация. Естественно, что эта информация в известной мере является неопределенной, а степень неопределенности зависит от уровня знаний и технической эрудиции специалиста-эксперта. Задача рабочей группы заключается в том, чтобы извлечь эту неясную информацию и придать ей математическую форму.

  • 3.1. Сменный, суточный и годовой режимы
  • Работы оборудования
  • 3.2. Производительность и норма выработки машин
  • 3.3. Стоимость эксплуатации оборудования
  • 3.4. Анализ эффективности работы оборудования
  • 4. Надежность оборудования и ее изменение при эксплуатации
  • 4.1. Показатели надежности оборудования
  • 4.2. Общие принципы сбора и обработки
  • Статистической информации о надежности
  • Оборудования при эксплуатации
  • Сбор информации об отказах оборудования
  • Обработка эксплуатационной информации по отказам
  • Оценка надежности оборудования
  • 4.3. Поддержание надежности оборудования при эксплуатации
  • На этапе эксплуатации оборудования
  • 5. Причины отказов оборудования при эксплуатации
  • 5.1. Специфика условий эксплуатации оборудования для бурения скважин, добычи и подготовки нефти и газа
  • 5.2. Деформация и изломы элементов оборудования
  • 5.3. Износ элементов оборудования
  • 5.4. Коррозионные разрушения элементов оборудования
  • 5.5. Сорбционные разрушения элементов оборудования
  • 5.6. Коррозионно-механические разрушения элементов оборудования
  • 5.7. Сорбционно-механические разрушения элементов оборудования
  • 5.8. Образование на поверхностях оборудования отложений твердых веществ
  • 6. Организация технического обслуживания, ремонта, хранения и списания оборудования
  • 6.1. Система технического обслуживания и ремонта оборудования
  • Виды технического обслуживания и ремонта оборудования
  • Стратегии то и р оборудования
  • Организация и планирование то и р оборудования по наработке
  • Организация и планирование то и р оборудования по фактическому техническому состоянию
  • 6.2 Смазочные материалы и спецжидкости назначение и классификация смазочных материалов
  • Жидкие смазочные материалы
  • Пластичные смазочные материалы
  • Твердые смазочные материалы
  • Выбор смазочных материалов
  • Способы смазки машин и смазочные устройства
  • Жидкости для гидравлических систем
  • Тормозные и амортизаторные жидкости
  • Использование и хранение смазочных материалов
  • Сбор отработанных масел и их регенерация
  • 6.3. Хранение и консервация оборудования
  • 6.4. Гарантийные сроки и списание оборудования
  • Списание оборудования
  • 7. Диагностика технического состояния оборудования
  • 7.1. Основные принципы технического диагностирования
  • 7.2. Методы и средства технической диагностики
  • Средства диагностики технического состояния оборудования
  • Методы и средства диагностического контроля насосных агрегатов
  • Методы и средства диагностического контроля трубопроводной запорной арматуры
  • 7.3. Методы и технические средства дефектоскопии материала деталей машин и элементов металлоконструкций
  • 7.4. Методы прогнозирования остаточного ресурса оборудования
  • 8. Технологические основы ремонта оборудования
  • 8.1. Структура производственного процесса ремонта оборудования
  • Индивидуальным методом
  • 8.2. Подготовительные работы для сдачи оборудования в ремонт
  • 8.3. Моечно-очистные работы
  • Состав смывок для очистки поверхности от лакокрасочных покрытий
  • 8.4. Разборка оборудования
  • 8.5. Контрольно-сортировочные работы
  • 8.6. Комплектование деталей оборудования
  • 8.7. Балансировка деталей
  • 8.8. Сборка оборудования
  • 8.9. Приработка и испытание агрегатов и машин
  • 8.10. Окраска оборудования
  • 9 Способы восстановления сопряжений и поверхностей деталей оборудования
  • 9.1. Классификация способов восстановления сопряжений
  • 9.2. Классификация способов восстановления поверхностей деталей
  • 9.3. Выбор рационального способа восстановления поверхностей деталей
  • 10 Технологические методы, применяемые для восстановления поверхностей и неразъемных соединений ремонтируемых деталей
  • 10.1. Восстановление поверхностей наплавкой
  • Ручная газовая наплавка
  • Ручная электродуговая наплавка
  • Автоматическая электродуговая наплавка под слоем флюса
  • Автоматическая электродуговая наплавка в среде защитных газов
  • Автоматическая вибродуговая наплавка
  • 10.2. Восстановление поверхностей металлизацией
  • 10.3. Восстановление поверхностей гальваническим наращиванием
  • Электролитическое хромирование
  • Электролитическое осталивание
  • Электролитическое меднение
  • Электролитическое никелирование
  • 10.4. Восстановление поверхностей деталей пластическим деформированием
  • 10.5. Восстановление поверхностей полимерным покрытием
  • Полимерных покрытий:
  • 10.6. Восстановление поверхностей механической обработкой
  • 10.7. Соединение деталей и их отдельных частей методами сварки, пайки и склеивания соединение деталей сваркой
  • Соединение деталей пайкой
  • Склеивание деталей
  • 11 Типовые технологические процессы ремонта деталей
  • 11.1. Ремонт деталей типа валов
  • 11.2. Ремонт деталей типа втулок
  • 11.3. Ремонт деталей типа дисков
  • Ремонт зубчатых колес
  • Ремонт цепных колес
  • 11.4. Ремонт корпусных деталей
  • Ремонтных деталей:
  • Ремонт корпуса вертлюга
  • Ремонтных деталей:
  • Ремонт корпуса крейцкопфа бурового насоса
  • Ремонт клапанных коробок буровых насосов
  • Дополнительных ремонтных деталей:
  • Ремонт корпусов задвижек фонтанной и трубопроводной запорной арматуры
  • Ремонт корпуса турбобура
  • Способом замены части детали:
  • Средства диагностики технического состояния оборудования

    Средства диагностики технического состояния оборудования служат для фиксирования и измерения величины диагностических признаков (параметров). Для этого применяют приборы, приспособления и стенды сообразно характеру диагностических признаков и методам диагностики.

    Значительное место среди них занимают электроизмерительные приборы (вольтметры, амперметры, осциллографы и др.). Они широко применяются как для непосредственного измерения электрических величин (например, при диагностике систем зажигания и электрооборудования автомобиля), так и для измерения неэлектрических процессов (колебаний, нагрева, давления), преобразованных при помощи соответствующих датчиков в электрические величины.

    При диагностике механизмов наиболее часто используют: датчики сопротивления, концевые, индукционные, оптические и фотоэлектрические датчики, при помощи которых можно измерять зазоры, люфты, относительные перемещения, скорость и частоту вращения проверяемых деталей; термосопротивления, термопары и биметаллические пластины для измерения теплового состояния деталей; пьезоэлектрические и тензометрические датчики для замера колебательных процессов давления, биений, деформаций и др.

    Одно из положительных качеств электроизмерительных приборов - удобство получения информации, а также в перспективе возможность ее анализа при помощи ЭВМ.

    В зависимости от полноты и степени механизации технологических процессов диагностику можно проводить выборочно, только для контроля технического состояния отдельных сборочных единиц, или комплексно для проверки сложных агрегатов, таких как двигатель, и, наконец, комплексно для диагностики машины в целом.

    В первом случае используются для отдельных измерений такие диагностические приборы как стетоскопы, манометры, тахометры, вольтметры, амперметры, секундомеры, термометры и другие переносные приборы. Во втором случае приборы комбинируют в виде передвижных стендов, в третьем случае - ими комплектуют пульты управления стационарных стендов.

    Передвижным комплексным средством диагностики является ходовая диагностическая станция. Она может обеспечивать диагностику технического состояния автомобилей в местах их временного размещения. Компоновка ходовой диагностической станции возможна на базе прицепа достаточно большой грузоподъемности.

    Основными требованиями к средствам диагностики являются: обеспечение достаточной точности замеров, удобство и простота использования при минимальной затрате времени.

    Помимо различных приборов, индикаторов узкого назначения в систему диагностических средств включают комплексы электронной аппаратуры. Эти комплексы могут состоять из датчиков - органов восприятия диагностических признаков, блоков измерительных приборов, блоков обработки информации в соответствии с заданными алгоритмами и, наконец, блоков хранения и выдачи информации в виде запоминающих устройств для преобразования информации в удобный для использования вид.

    Методы и средства диагностического контроля насосных агрегатов

    Диагностический контроль насосных агрегатов осуществляется по параметрическим и виброакустическим критериям, а также по техническому состоянию отдельных сборочных единиц и деталей, оцениваемому при выводе насосов из эксплуатации.

    Для проведения диагностических контролей используется виброаппаратура с возможностью измерения спектральных составляющих вибрации, шумомеры с возможностью измерения октавных составляющих, приборы, позволяющие определять техническое состояние подшипников качения или аналогичные им, но с большими функциональными возможностями отечественного или зарубежного производства.

    Средства контроля вибрации и методы вибродиагностики должны обеспечивать решение следующих задач:

    своевременного обнаружения возникающих дефектов составных частей оборудования и предотвращения его аварийных отказов;

    определения объема ремонтных работ и рационального их планирования;

    корректировки значений межремонтных интервалов и прогнозирования остаточного ресурса составных частей оборудования по его фактическому техническому состоянию;

    проверки работоспособности оборудования после монтажа, модернизации и ремонта, определения оптимальных режимов работы оборудования.

    Насосные агрегаты должны быть оснащены контрольно-сигнальной виброаппаратурой (КСА) с возможностью контроля текущих параметров вибрации, автоматической предупредительной сигнализацией и автоматическим отключением при предельно допустимом значении вибрации.

    До установки контрольно-сигнальных средств контроль и измерение вибрации осуществляются портативными (переносными) средствами виброметрии. Датчики виброаппаратуры устанавливаются на каждой подшипниковой опоре.

    В качестве измеряемого и нормируемого параметра вибрации устанавливается среднее квадратическое значение (СКЗ) виброскорости в рабочей полосе частот 10-1000 Гц.

    Измерение значений виброскорости осуществляется в вертикальном направлении на каждой подшипниковой опоре. При этом регистрируется соответствующий режим работы насоса - подача и давление на входе.

    В табл. 7.3 приведены допустимые уровни вибрации при эксплуатации центробежных насосов.

    Таблица 7.3 Предельно допустимые нормы вибрации при эксплуатации насосов

    Высота оси вращения ротора, мм

    Среднее квадратическое значение

    виброскорости, мм/с

    У насосов, не имеющих выносных подшипниковых опор (насосы со встроенными подшипниками), вибрация измеряется как можно ближе к оси вращения ротора.

    При определении шумовых характеристик измеряются в соответствии с ГОСТ 23941 уровень звука L А (в дБА) в контрольных точках; уровень звукового давления L i , (в дБА) в октавных полосах частот (от 31,5 до 8000 Гц) в контрольных точках.

    Приборы, применяемые для измерения шумовых характеристик, число точек измерения и измерительные расстояния определяются ГОСТ 12.1.028, технической документацией на конкретный шумомер и условиями эксплуатации диагностируемого оборудования. При определении шумовых характеристик (базовых и текущих) должны соблюдаться одинаковые условия измерений (режим работы, количество одновременно работающего оборудования и др.).

    По результатам диагностических контролей принимается решение о выводе насосов в ремонт или их дальнейшего использования по назначению.

    В табл. 7.4 приведены виды диагностических работ и допустимые значения контролируемых параметров для магистральных и подпорных насосов нефтеперекачивающих станций.

    Периодичность, форма и объем регистрируемых параметров должны быть определены нормативными документами с учетом возможной ручной, автоматизированной или смешанной системы регистрации информации.

    Основные причины вибраций насосных агрегатов и характер их проявления представлены в табл. 7.5.

    Основные причины вибрации насосных агрегатов обусловливаются механическими, электромагнитными и гидродинамическими явлениями, а также жесткостью опорных систем.

    Таблица 7.4

    Виды диагностических работ и допустимые значения

    контролируемых виброакустических параметров и значений

    температур для магистральных и подпорных насосов

    Вид диагностических работ

    Контролируемый параметр и

    место измерения

    Допустимое значение параметра

    Оперативный диагностический контроль

    Плановый диагностический контроль

    Неплановый диагностический контроль

    Послеремон-тный диагностический контроль

    СКЗ виброскорости на подшипниковых опорах в вертикальном направлении

    СКЗ виброскорости на лапах корпуса насоса в вертикальном направлении

    Температура подшипников

    СКЗ и спектральные составляющие виброскорости на всех подшипниковых опорах в трех взаимно перпендикулярных направлениях

    СКЗ виброскорости на лапах корпуса насоса, головках анкерных болтов в вертикальном направлении

    Уровень шума

    Температура подшипников

    Вибрации опорно-упорного подшипника или подшипников качения

    Контролируемые параметры, их допустимые значения и место измерения соответствуют плановому диагностическому контролю

    СКЗ виброскорости на подшипниковых опорах в трех взаимно перпендикулярных направлениях

    СКЗ виброскорости на лапах корпуса насоса и головках анкерных болтов в вертикальном направлении

    Вибрация опорно-упорного подшипника или подшипников качения

    Температура подшипников

    Увеличение температуры относительно базового значения на 10 °С

    Увеличение относительно базового значения на 6 дБА

    Увеличение температуры относительно базового значения на 10°С

    Не более 45 дБ

    Не более 4,5 мм/с

    Не более 1 мм/с

    Не более 35 дБ

    Не выше 70°С

    Таблица 7.5 Влияние неисправностей на виброакустический спектр насосных агрегатов

    Причина повышенной вибрации

    Направление

    Причина повышенной вибрации

    Направление

    Дисбаланс вращающихся элементов. Ослабление посадки деталей ротора 1

    Несоосность 2

    Нецилиндричность шейки вала

    Повреждение подшипников качения

    Овальность внутреннего кольца

    Радиальный зазор

    Неуравновешенность, разностенность сепаратора

    Волнистость, гранность шариков

    Дефекты дорожки внутреннего кольца

    Дефекты дорожки внешнего кольца

    Радиальное

    Радиальное и осевое

    Радиальное

    Радиальное и осе вое, обычное с низкой амплитудой

    Неравномерный зазор ротор-статор электродвигателя

    Короткое замыкание обмотки возбуждения синхронного электродвигателя

    «Масляное биение» в подшипнике скольжения

    Неравномерность потока охлаждающего воздуха

    Гидравлический небаланс рабочего колеса

    Неравномерность поля скоростей и вихреобразование в насосе

    Кавитационные явления в насосе

    Неисправность зубчатой муфты 3

    Ослабление жесткости подшипникового узла

    Радиальное

    Радиальное

    Радиальное

    Радиальное

    Радиальное

    Радиальное

    Радиальное, осевое

    Радиальное, горизонтальное

    1 Частая причина высокой вибрации оборудования.

    2 Частая причина вибрации. Осевая вибрация - главный показатель, часто она превышает радиальную.

    3 Для обеих смежных с муфтой подшипниковых опор.

    При проведении измерений необходимо попытаться разделить перечисленные источники повышенной вибрации насосных агрегатов. При наличии повышенной вибрации подшипниковых опор агрегата необходимо проверить жесткость крепления подшипниковых опор к корпусу или раме, жесткость крепления корпуса насоса и рамы двигателя к фундаменту. Повышенная вибрация в горизонтальной плоскости указывает на уменьшение жесткости в горизонтальных направлениях.

    По результатам измерения вибрации для каждой контролируемой точки строится график изменения среднего квадратического значения виброскорости в зависимости от наработки (рис. 7.7). До виброскорости 6,0 мм/с график можно представить прямой линией, проведенной согласно полученным значениям вибрации. Далее график строится по значениям вибрации, соответствующим наработке насосного агрегата после виброскорости 6,0 мм/с. График, построенный после достижения уровня вибрации 6,0 мм/с, как правило, будет располагаться под большим углом к оси абсцисс и позволит оценить время наступления предельно допустимого значения вибрации τ 1 при предельном значении виброскорости 7,1 мм/с или τ 2 - при 11,2 мм/с.

    Для более достоверной оценки технического состояния и остаточного ресурса отдельных деталей или узлов рекомендуется строить также график по основным спектральным составляющим, указывающим возможные дефекты насосных агрегатов.

    В процессе эксплуатации насосного агрегата его техническое состояние меняется из-за износа деталей и узлов. Наиболее распространенной и значимой причиной ухудшения характеристик насоса в процессе эксплуатации является износ деталей щелевого уплотнения рабочего колеса.

    Насосные агрегаты необходимо выводить в ремонт при снижении величины напора насоса от базовых значений на 5-7 %.

    Значение возможного снижения КПД относительно базового значения может уточняться для конкретного типоразмера насоса на основании экономической оценки из условия, что стоимость ремонта, при котором обеспечивается восстановление первоначального КПД, будет выше затрат, вызванных перерасходом электроэнергии из-за снижения КПД насоса.

    Диагностирование состояния насосных агрегатов по параметрическим критериям допускается проводить как на основе данных, полученных по каналам телемеханики, так и на основе контрольных измерений с применением образцовых средств измерений давления, подачи, мощности, частоты вращения ротора насоса, плотности и вязкости перекачиваемой жидкости.

    Измеряемые параметры и средства измерения:

    давление на входе и выходе насосного агрегата измеряется штатными первичными преобразователями давления с точностью 0,6 % при использовании АСУ или образцовыми манометрами класса 0,25 или 0,4;

    подача определяется по узлу учета, по объемам резервуаров с помощью переносных ультразвуковых расходомеров или другими способами;

    мощность, потребляемая насосом, измеряется при помощи штатных первичных преобразователей мощности с точностью не ниже 0,6 %. При установившихся режимах для грубой оценки допускается определять мощность по счетчику потребляемой электроэнергии или вольтметру и амперметру;

    частота вращения ротора замеряется датчиком частоты вращения с точностью 0,5 %;

    плотность и вязкость перекачиваемой жидкости определяются по узлам учета или в химлаборатории.

    Замер параметров проводится только при установившемся (стационарном) режиме перекачки.

    Контроль стационарности режима осуществляется по подаче (при возможности непосредственного измерения) или по давлению на входе или выходе насосного агрегата. Колебания контролируемого параметра не должны превышать ± 3% от среднего значения.

    Параметры измеряются при бескавитационном режиме работы насосного агрегата (контролируются при измерении вибрации и по давлению на входе в насос).

    Эксплуатация оборудования неразрывно связана с оценкой его технического состояния. Техническое состояние объекта – это совокупность его свойств, которые характеризуются в определенный момент времени, при определенных условиях внешней среды значениями структурных параметров, установленных технической документацией на объект диагностирования. .

    Техническая диагностика – область знаний о распознавании состояния технических систем (объектов), исследующая формы проявления технического состояния, разрабатывающая методы и средства его определения. .

    К основным задачам технической диагностики можно отнести следующие:

    Определение состояния технической системы;

    Прогнозирование изменения ее состояния;

    Определение места и причин поломок.

    Алгоритм технического диагностирования (контроля) устанавливает состав и порядок проведения элементарных проверок объекта и правила анализа их результатов. .

    Можно выделить два метода проведения технической диагностики (прямой и косвенный), которые, в свою очередь, делятся на множество способов, различающихся, как правило, по типу применяемых средств технического диагностирования. Остановимся более подробно на диагностике косвенными методами.

    Косвенные методы диагностирования основываются на определении структурных параметров технического состояния сборочных единиц машин по косвенным параметрам. Диагностирование косвенными методами не требует разборки машины. Многие методы осуществляются за счет преобразования механических величин в электрические специальными приборами.

    В общем случае косвенные методы диагностирования можно разделить на несколько групп (Рис.1).

    Рис.1. Методы косвенной диагностики

    Акустический шум и колебания механизмов, лежащие в основе виброакустической диагностики, используются для оценки технического состояния механизмов уже довольно долгое время. Колебательные процессы имеют огромное значение в современной технике. В основе виброакустической диагностики лежит получение информации об относительном и абсолютном смещении деталей машины, распределение пульсаций в рабочих узлах, акустическая эмиссия материала и т.д. Большинство дефектов, влияющих на ресурс механизма, изменяют параметры виброакустического сигнала, поэтому именно использование виброакустической диагностики во многих случаях может служить основным методом контроля.

    Присутствие колебаний может быть как неотъемлемым признаком исправного функционирования оборудования, а может быть нежелательным явлением. Таким образом, вибрация может быть как полезной, так и вредной.

    Вредное действие вибрации приводит к изнашиванию отдельных узлов оборудования (осей, валов щеток электромоторов и т.д.). В качестве выявляемых повреждений, как правило, выступает зазор между деталями, служащий причиной их соударения во время работы. Этот процесс реализуется путем распространения упругих волн акустического диапазона, возникновения вибрации и ударных импульсов. Значения вибрации показывают степень нарушения нормальной передачи динамических сил через техническую систему. Для нормальной работы машины характерен низкий уровень вибрации. С увеличением зазоров происходит увеличение вибрации ближайшего к дефекту подшипника и повышение колебаний в других подшипниковых узлах. Подшипниковый узел становится элементом, передающим динамические усилия от места дефекта на корпус устройства.

    В последнее время техника для измерения вибрации шагнула на новый уровень. С виброметрией связаны области электроакустики, электроники, радиотехники, автоматики, вычислительной техники и т.д., созданы новые приборы для измерения вибрации.

    Виброакустический метод диагностики хорошо зарекомендовал себя, и в настоящее время для определения состояния оборудования достаточно значения параметров вибрации и использования специальных таблиц. Как пример, можно привести таблицу оценки технического состояния машины по значению среднеквадратичной виброскорости.

    Таблица 1. Оценка технического состояния машин по значениям среднеквадратичной виброскорости, мм/с .

    Характеристика группы машин Техническое состояние
    «хорошее» «допустимое» «плохое» «аварийное»
    Отдельные части двигателей и машин, соединенные с агрегатом и работающие в обычном для них режиме (например, серийные электрические моторы мощностью до 15 кВт) до 0,7 0,7-1,8 1,8-4,5 более 4,5
    Машины средней величины (например, электромоторы мощностью от 15 до 875 кВт) до 1,1 1,1-2,8 2,8-7,1 более 7,1
    Мощные первичные двигатели и другие мощные машины с вращающимися частями, установленные на массивных фундаментах, относительно жестких в направлении измерения вибрации до 1,8 1,8-4,5 4,5-11,2 более 11,2
    Мощные первичные двигатели и другие мощные машины с вращающимися частями, установленные на массивных фундаментах, относительно податливых в направлении измерения вибрации (например, газовые турбины с выходной мощностью более 10 МВт). до 2,8 2,8-7,1 7,1-18 более 18

    Оценка состояния машины по виброакустическим признакам ведется с помощью датчиков вибрации, шумомера или стетоскопа. Амплитуда колебаний дает информацию о динамике работы кинематической пары и размере дефекта, а частота – об источнике колебаний.

    Магнитоэлектрические методы диагностирования основаны на регистрации изменения магнитного потока в диагностическом датчике, взаимодействующего с контролируемым механизмом. В основе магнитных методов лежит регистрация магнитных полей рассеивания, возникающих в зоне дефектов, и на определении магнитных свойств диагностируемых объектов.

    Основными методами магнитноэлектрической диагностики механизмов являются:

    Магнитопорошковый;

    Феррозондовый;

    Вихретоковый;

    Электроискровой;

    С использованием датчиков Холла.

    Как правило, с помощью магнитоэлектрической диагностики не только выявить дефект в изделии, но и определить его размеры и местонахождение. Некоторые типы приборов способны обнаруживать дефекты, определять глубину их и координаты относительно плоскостей изделия. С помощью магнитопорошкового метода могут быть обнаружены различные трещины, непровары сварных соединений и другие дефекты шириной несколько микрометров. Метод также подходит для контроля объектов с немагнитным покрытием.

    Параметром, указывающим на присутствующую в механизме неисправность, может выступать температура, отражающая протекание рабочего процесса. С помощью тепловой диагностики выявляются:

    Деформации, вызываемые неравномерностью нагрева;

    Состояние тормозов, подшипниковых узлов, муфт и др.

    Методы измерения температуры делятся на контактные и бесконтактные, которые также подразделяются по физическим эффектам, положенным в основу их принципа действия.

    К контактным методам термометрии относится действие термометров, термопар и терморезисторов. К бесконтактным – пирометров и тепловизоров.

    Работа температурных датчиков, как правило, основывается на принципе преобразования измеряемой температуры в электрическую величину. Это обусловлено удобством передачи электрических величин на расстояние и их универсальностью.

    Можно заметить, что диагностирование по косвенным признакам обычно проводится с помощью аналоговых электромеханических измерительных приборов. В общем случае они имеют следующую структурную схему (рис.2):

    Рис.2. Структурная схема аналогового электромеханического измерительного прибора.

    Измерительная цепь прибора позволяет преобразовать измеряемую величину Х в промежуточную величину У, связанную с измеряемой величиной. Измерительный механизм служит для преобразования электромагнитной энергии в механическую, которая необходима для выдачи информации об измеряемой величине.

    Цифровые измерительные приборы действуют несколько иным образом: преобразуют измеряемую величину в дискретную форму, после чего подвергают цифровому кодированию и выдают результат на отсчетном устройстве.

    Рассмотрим возможное применение косвенных методов диагностирования в сфере бытовых машин и приборов.

    Для определения дефектов бытовой холодильной техники, как правило, применяют портативную диагностическую аппаратуру. Использование современных контрольно-измерительных приборов дает возможность повысить качество ее контроля и, как следствие, с большей точностью диагностировать причины отказов при эксплуатации.

    Появление неисправности в холодильнике обычно характеризуется каким-либо отклонением в показателях его работы – расходе электроэнергии, температуре и т.д. Выявление такого отклонения является первым этапом проверки холодильника. После этого необходимо найти причину и место дефекта. Так как появление неисправности зачастую приводит к нарушению процесса теплообмена между частями холодильного агрегата и окружающей средой, расположение дефекта можно установить по характерным признакам, таким как шум, повышение температуры и т.п.

    Во время работы компрессора вследствие сжатия паров хладагента и нагрева обмоток электродвигателя выделяется тепло, что приводит к увеличению температуры фреона, металлических частей компрессора и масла в его кожухе. Тепло от нагретых областей частично отводится в окружающую среду через стенки кожуха. При прохождении по нагнетательной трубке пары хладагента охлаждаются, что приводит к постепенному уменьшению температуры поверхности трубки. Следовательно, нагрев поверхности трубки в месте ее соединения со змеевиком конденсатора должен быть намного ниже, чем в месте ее выхода из кожуха компрессора.

    Распространенным дефектом бытового холодильника можно считать утечку фреона, диагностируемую, как правило, с помощью галоидного течеискателя. Сторону нагнетания холодильного агрегата в этом случае проверяют при работающем, а сторону всасывания – при отключенном мотор-компрессоре. В качестве альтернативы этому методу контроля можно предложить использование тепловизора. Тепловизоры достаточно полно отражают температурное поле эксплуатируемого оборудования, координатно или визуально указывают на конкретные горячие (или – холодные) места, которые могут быть источником опасных дефектов, потерь энергии, коротких замыканий и т.д. Некоторые тепловизоры способны измерить температуру этих «горячих» точек и дать необходимую информацию для цифрового анализа.

    Тепловизоры эффективно используются и для диагностики электрических сетей и оборудования. Возникающее избыточное сопротивление тока вызывает заметное повышение температуры в проблемных местах. Это может вызывать повреждения проводки и оборудования. Ранняя диагностика неполадок в электрических сетях позволяет предотвратить снижение производительности электросети и потери электроэнергии на ненужное производство тепла.

    Шум при работе холодильника возникает по причине наличия в нем движущихся механизмов. Уровень звука холодильного агрегата не должен превышать 45 дБА на расстоянии 1 м или уровня звука образца-эталона. Шум должен быть равномерным, без дребезжаний.

    Анализ звуков, возникающих при работе компрессора, позволяет диагностировать в нем различные неисправности. Например, металлический стук при работе компрессора, сопровождающийся вибрацией шкафа, может указывать на расшатанность опорных элементов, неисправность компрессора и касание незакрепленными трубопроводами деталей шкафа. Причиной повышения вибрации в холодильном агрегате также может служить износ подшипников скольжения, что приводит к заклиниванию двигателя при его пуске. Нормальной работе подшипников соответствует монотонный и шелестящий шум. Диагностику неисправностей в таком случае целесообразно проводить с применением вибродатчика и шумомера, а по полученным результатам делать вывод о состоянии холодильника.

    На сегодняшний день значительная часть отказов бытовых холодильников связана с выходом из строя мотор-компрессоров. Как правило, в таком случае возвращение холодильного агрегата в работоспособное состояние проводится путем замены компрессора.

    Неисправности мотор-компрессора, диагностируемые путем измерения виброакустических характеристик холодильного агрегата:

    Нарушение подвески компрессора в кожухе;

    Нарушение сопряжений трущихся пар.

    Примеры выявления неисправностей виброакустическим способом можно проследить и у других бытовых приборов. Например, сильная вибрация, скрежет и шум при работе пылесоса указывают на износ подшипников и выработку смазки. Причиной возбуждения колебаний зачастую выступает неуравновешенность роторов. Посторонние звуки при стирке белья указывают неисправности активатора стиральной машины: износ оси, касание стенки бака и т.д. Сильный шум и вибрация при вращении барабана указывают на неисправность командоаппарата, ослабление крепления противовесов.

    Представим процесс измерения вибрационных характеристик машины в виде структурной схемы.

    В общем случае ее можно изобразить в виде следующих блоков:

    Объект измерения;

    Вибропреобразователь;

    Блок обработки;

    Устройство отображения полученной информации (дисплей).

    Рис.3 Структурная схема процесса измерения вибрации (в общем случае)

    Вибропреобразователь служит для преобразования механических вибраций в электрический сигнал, блок обработки – для расшифровки этого сигнала.

    Представим полученную схему в более развернутом виде.

    Рис.4 Структурная схема процесса измерения вибрации (в развернутом виде): 1 – объект измерения; 2 – крепление; 3 – датчик вибрации; 4 – кабель; 5 – электрический вход; 6 – согласование сигнала; 7 – частотная коррекция; 8 – дополнительное преобразование и корреция сигнала; 9 – отображение результата измерения

    С помощью крепления на диагностируемую поверхность устанавливают датчик вибрации. Посредством соединительного кабеля данные от датчика поступают в блок согласования сигнала, а оттуда – в блок частотной коррекции, где производится частотный анализ для получения информации о спектре вибрации. После этого происходит коррекция сигнала и вывод результата измерения на дисплей (или иное средство отображения).

    К факторам, оказывающим влияние на виброакустическое поле машины, стоит добавить возбуждение резонансных колебаний в случае совпадения вынужденных частот с собственными. Как результат воздействия множества факторов виброакустические характеристики механизма при нормальном техническом состоянии подвержены колебаниям, вследствие чего диагностику нужно проводить с учетом нестабильности результатов.

    Методы синтеза диагностических признаков зарождающихся дефектов обеспечивают высокую достоверность не только процедур оценки текущего технического состояния объекта диагностирования, лежащих в основе технологии эксплуатации машин по состоянию, но и процедур прогнозирования работоспособности узлов, лимитирующих ресурс механического оборудования. . Сравнивая прямые и косвенные методы диагностики, нельзя не отметить очевидные достоинства последних: возможность контроля оборудования во время его работы, отсутствие необходимости разборки механизма и выявление зарождающихся неисправностей на начальной стадии, не дожидаясь сбоя в работе.

    Как недостаток метода, можно указать высокую стоимость некоторых из приборов, требуемых для его применения. В то же время нужно отметить, что косвенная диагностика, выявляя дефекты на ранних стадиях их развития, позволяет предотвратить поломку оборудования, что, напротив, способствует уменьшению затрат за счет отсутствия необходимости в покупке новой техники. Применение косвенной диагностики дает возможность проводить безразборный контроль работы оборудования, что обеспечивает сокращение его простоев. Не стоит забывать и о том, что исследование и измерение параметров работы машины может принести пользу как способ изучения функционирования сложного механизма и служить основой для дальнейшего его совершенствования. Таким образом, диагностика бытовых машин и приборов по косвенным признакам может выполнять не только функцию наблюдения и контроля за состоянием оборудования, но и способствовать изобретательской деятельности. Дальнейшее совершенствование датчиков и применение их в интерактивном режиме позволит диагностировать неисправность при первых признаках ее появления.

    Количество просмотров публикации: Please wait